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ABSTRACT 

Many universities and institutes experience difficulty in training people to work with 
expensive equipments. A common problem faced by educational institutions concerns 
the limited availability of expensive robotics equipments, with which students in the 
academic programs can work, in order to acquire valuable "hands on" experience. 
Therefore, the Robot Simulation Software (RSS) nowadays is paramount important. 
Moreover, hands on experience with programmable robots gives student great 
understanding. 

This work reports the development of a visual software package where an AL5B 
Robot arm has been taken as a case study. It adopts the virtual reality interface design 
methodology and utilizes MATLAB/Simulink and AutoCAD as tools for testing 
motional characteristics of the AL5B Robot arm. Moreover, the developed model is 
implemented and tested in order to analyze and improve the algorithms of Kinematics, 
Inverse Kinematics, Velocity Kinematics "Jacobian" and Trajectory Planning. The 
package life cycle is documented. Then, a comparison between the simulated package 
and the physical arm is accomplished in terms of motion, trajectories, and kinematics. 

The developed package is used as an educational tool in to enhance the applied 
and experimental research opportunities and it improve the robotics curricula at the 
graduate and undergraduate levels.  

 
Keywords: Virtual Reality, Modeling, Simulation, Interface, MATLAB/Simulink, 
AL5B Robot arm, Forward Kinematics, Inverse Kinematics, Trajectory Planning, 
Jacobian  
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 ملخص

  بوت تعليمي ذو خمس مفاصلو لذراع رةربط ومحاكا

 على العمل مع معدات باهظة طلابكثير من الجامعات والمعاهد صعوبة في تدريب التواجه ال
وذلك  قلة توافر الروبوتات هي وهناك مشكلة مشتركة تواجهها المؤسسات التعليمية .الثمن

 من أجل الحصول على خبرة قيمةمج التعلمية والتي يستخدمها الطلاب في البرا. لإرتفاع ثمنها
ت له اهمية قصوي في تصميم برمجيات لعمل محاكاه مع الربولذلك فإن . في مجال التحكم

علاوةً علي ذلك الخبرة العملية في برمجة أجهزة الروبوت تعطي الطلبة فهم . رالوقت الحاض
  .معمق

 AL5B استخدم ذراع الربووت حيث برامج المحاكاه عن وضع فصيلاًهذا العمل سوف يقدم ت
 بتصميم منهجي باستخدام برنامج الواقع الافتراضي  ربطتعتمد علىحيث انها  .كدراسة حالة

MATLAB/Simulink لعمل نموذج لهذا الربوت وايضاً استخدامهاأوتوكادأيضاً برنامج و  
تم تطوير يس .AL5B من نوع  الخصائص الحركية لذراع الروبوتالتصميم وكأدوات لاختبار

ت عن طريق تحليل الحركة الامامية ، الحركة العكسية ، السرعة لهذا الروبومحاكاة نموذج 
سنقوم في النهاية بعمل ثم  .وسيتم تنفيد جميع ما ذكر واختباره. الحركية وايضأً مسار الحركة

النسبة الحقيقي المستخدم في هذه الدراسة بمقارنة بين نموذج المحاكاه المطور مع الذراع 
  .للحركة والمسارات

 

 في زيادةهذا العمل يساهم  ان توقعنو . كأداة تعليميةهذا البرنامج المُتطورستخدم يُوسوف 
 للدراسات العليا مناهج الروبوتات تطويريضاً امكانية والبحث  التعليم والتدريب وافرص
  .بكالوريوسوال
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

Over the last two decades, robotics education has been based on mobile robotics and 
manipulator-based robotics. The accessibility of small inexpensive mobile robots has 
promoted their use in the classroom across abroad spectrum of educational levels all 
over the world [KOL 01]; however, robotics is still an emerging topic in Gaza strip and 
access to commercial robots is next to impossible. 

Researchers around the world developed educational models and exposed 
kindergarten students [MIL 00] and middle to high school students [WED 02] to hands-
on learning employing mobile robotics. Robotics education on undergraduate and 
graduate levels is still the main focus of educators [FER 00].  

Manipulator- based robotics education requires a large startup investment; thus, 
did not enjoy sharp exposure. Murphy [MUR 00] promoted the use of robotics to teach 
artificial intelligence and offered hands-on learning and robot contests [MUR 01]. 
Sutherland [SUT 00] described a successful approach to expose undergraduate student 
to robotics with limited resources. Palestine Technical College at Deir el Balah 
(PTCDB) holds an annual contest and is open to all students [PTCDB].  

The outcomes of this study serve these universities by developing software 
package to be used as an educational tool for robotics classes by enhancing the course 
with simulation and practical lab. The devolved package enriches the blended 
theoretical robotics presentations introduced in these universities. 

1.2 Problem Statement and Goal 

There are several universities and colleges in Gaza strip that teach robotics 
course; namely, the Islamic university, Alazhar University, and Palestine Technical 
College. Robotics courses at local universities are mainly theoretical; there are no 
practical labs to apply the theoretical concepts of these courses. The goal of this 
research is to develop a visual software package, which simulates a 5DOF robot arm; 
this package will cover most of the important topics given in the introductory course in 
robotics manipulators. This will increase the education, training and research in 
graduate and undergraduate studies in the robotics field, taking into consideration the 
limited availability of educational tools for robotics courses and the high cost of robot 
equipments and tools.  

The AL5B robot arm [LYN 06] presents a simple inexpensive solution and a 
good example for robotic manipulators, this arm is chosen as a case study in this 
research. MATLAB/Simulink and AutoCAD will be used for testing motional 
characteristics of the arm. A complete study and mathematical analysis for the forward 
kinematics, inverse kinematics, velocity kinematics (Jacobian), and trajectory planning 
problems is presented, implemented and tested. An interfacing card is designed and 
developed. The developed algorithms were implemented and applied to the AL5B 
physical arm. A comparison between the kinematic solutions of the developed software 
package with the robot arm’s physical motional behaviors is discussed. 
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1.3 System Overview 

The complete system block diagram shown in Figure (1.1) consists of many parts like, 
personal computer with serial communication adapter, CUBLOC microcontroller [COM 
05] and AL5B Robot arm. The Graphical User Interface (GUI), designed by MATLAB 
software, consists of four parts; forward, inverse kinematic, path and trajectory planning, 
Jacobian and controller. The forward kinematics consists of finding the position of the 
end-effector in the space knowing the movements of its joints. The inverse kinematics 
consists of the determination of the joint variables corresponding to a given end-effector 
position and orientation. Path is defined as sequence of robot configurations in 
particular order without regard for timing of these configurations, trajectory is 
concerned about when each part of the path must be obtained thus specifying timing. 
Each joint velocity at the specified joint positions needs to be found; this is 
accomplished using Jacobian. The last part is the simple controller block used to control 
the robot arm by GUI program. 

 

Figure (1.1): System Block Diagram 

Serial communication is the simplest way to communicate between two devices. 
A serial interface is established through a serial port object, which can be created using 
the SERIAL function by MATLAB. The main function of the CUBLOC 
microcontroller is making interface between PC and AL5B robot arm by receiving data 
from serial port and sending this data to the arm servo motors. then feeding the data 
from servo motors encoders back to the PC through serial port. 

1.4 Literature Review  

Many industrial robot arms are built with simple geometries such as intersecting 
or parallel joint axes to simplify the associated kinematics computations [MAN 96]. 
However, their costs are high for students and research workers. AL5B is a good 
alternative for such robot manipulators, because it is inexpensive, flexible and similar to 
industrial robot arms. 

Papers that developed software for modeling 2D and 3D robots arm such as 
[MAN 96, KOY 07 and GUR 97], forward and inverse Kinematic are analyzed and then 
according to the model a computer simulation is generated, a simulation and testing 
characteristics of this robot arm is prepared by a programming languages. 2D and 3D 
visualization are used to build GUI friendly for users as educational tool. The software 
is incomplete, because it did not investigate anything about the path and trajectory 
planning. 

[PAS 07] used V-Realm Builder 2.0 and Simulink for virtual reality prototyping 
and testing the viability of designs before the implementation phase for the industrial 
SCARA robot, located in the Control Robot Lab of the University of Oradea. In 
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addition, they illustrated the use of the 3D Joystick for manipulating objects in a virtual 
world.  

Martin and Arya in [ROH 00, WIR 04], developed Robot Simulation Software 
for forward and inverse kinematic using VRML and MATLAB Simulink. The output of 
the system had good graphic capability and flexibility in terms of 3D representation. 
However, the system was not able to run as stand-alone application and was not user 
friendly.  

[JAM 08] reported the development of the Robot Simulation Software (RSS) 
where a Mitsubishi RV-2AJ robot was taken as a case study. The project adopted the 
virtual reality interface design methodology and utilized MATLAB/Simulink and V-
Realm Builder as tools. A robot model was developed and a RSS software life cycle 
was implemented. 

[MAR 06] presented a Visual C++ and OpenGL application for 3D simulation 
of the serial industrial robots. It started from the forward kinematics of the robot taken 
into consideration. The functions implemented in the source code are able to calculate 
the position and orientation of each robot joint, including the position and orientation of 
the robot gripper. With the help of the OpenGL functions, the application was able to 
draw and simulate the 3D kinematic scheme of the robot. 

An approach proposed to develop real-time simulators of complex 
electromechanical systems by exploiting the most powerful non real-time modeling and 
control design tools in [FER 08]. This approach relied on standard and commercial tools 
and on open source packages, and required the development of few interface blocks to 
be included within the Simulink and Dymola models, respectively. The modeling and 
validation work carried out on a joint prototype in the early phase of the arm 
development process could be fully included in the real-time simulation model, 
achieving quite accurate and reliable results almost effortlessly. The Simulink arm 
controller description can also be easily tested in an incremental way. A significant 
effort was devoted to create a human machine interface able to support the input of 
motion commands and force disturbances, together with the 3D visualization of the arm 
motion, relying on a powerful open source package. 

There are large amount of literature which discuses the kinematics analysis of 
industrial robots [CRA 05]. The majority of them shy away from discussing the low 
cost educational robot arms. After going over the last group of papers, we can notice 
that none of them gives a complete educational tool to control AL5B robot arm for 
student at college level. Thus, this research will study mathematical model and 
kinematical analysis of the AL5B educational robot. A Visual Software Program (VSP) 
will be also developed to show the robot arm motion with respect to its mathematical 
analysis and interfacing with physical robot. 

1.5 Objectives 

In order to achieve the main goal objectives of this study, the work is going to be 
divided into two phases.  

Phase 1 

1) Developing a visual software package, for testing motional characteristics of the 
AL5B Robot arm  
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a. Drawing a 3D Model for the Robot Arm using MATLAB/Simulink and 
AutoCAD. 

b. Designing a Graphical User Interface "GUI" using MATLAB. 

2) Derivation of a complete kinematic model for the robot. 

a. Studying the theory of kinematics in order to analyze of the 5 DOF 
AL5B Robot Arm. 

b. Applying the Denavit-Hartenberg (D-H) model to the physical arm links 
and joints to derive the forward kinematic equations. 

c. Finding the Inverse kinematics solutions for this educational manipulator 
and suggesting a method for decreasing multiple solutions in IK. 

3) Derivation of the Velocity Kinematics (Jacobian) of the Manipulator considering 
singularity. 

4) Applying a Path and Trajectory planning algorithm. 

Phase 2: 

1) Development of an electronic interfacing circuit between the AL5B robot arm 
and the developed GUI program.  

2) Holding a comparison between the physical arm and the simulated one. 

1.6 Thesis Contribution 

The contribution of this thesis concentrates on developing two components related to 
the AL5B. The first component is concerned with a simulation toolbox, while the 
second component focuses on interfacing the physical AL5B with the PC. 

In the first component, a 3D model is developed to emulate the AL5B motion, 
which is manly based on a developed analytical kinematics. 

The second component develops an interface between the AL5B and the PC using serial 
communication. A new type of microcontrollers called CUBLOC is used to interface 
the AL5B with PC by designing an educational interfacing card for this purpose.  

The thesis also compares the results of the real-time system with the simulation 
model. 

1.7 Thesis Outline 

This thesis structured in the following way: chapter 2 provides theoretical background, 
which describes the different types of robot arm and shows the workspace for each of 
them. Some definition such as kinematic modeling, simulation and programming 
techniques are presented through this chapter. Chapter 3 discusses the Kinematics 
analysis: the DH parameters, forward, inverse kinematic and it shows the modeling of 
the robot arm under study. Chapter 4 illustrates the Jacobian equation of the robot arm 
in section 1. Section 2 presents the singularity problem and the last two sections present 
the inverse velocity equation and the relation between the torque and the force. Chapter 
5 discusses the Trajectory Planning problem and it illustrates the different types of 
trajectories used in this thesis like Cubic and Quantic polynomials trajectories.  Chapter 
6 shows the hardware and software implementation of the AL5B robot arm. Explain the 
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main function of the software and flowchart. Also in this chapter, we explain how we 
can make the interface between robot and computer. Chapter 7 shows the results of 
testing the developed system are presented and discussed. Finally, a general conclusion 
is provided as well as recommendations and perspectives for future work are presented 
in chapter 8. 
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CHAPTER 2 THEORETICAL BACKGROUND 

2.1 Common Kinematic Arrangements of Manipulators 

Robotics is a relatively young field of modern technology that crosses traditional 
engineering boundaries. Understanding the complexity of robots and their applications 
requires knowledge of electrical engineering, mechanical engineering, systems and 
industrial engineering, computer science, economics, and mathematics. New disciplines 
of engineering, such as manufacturing engineering, applications engineering, and 
knowledge engineering have emerged to deal with the complexity of the field of 
robotics and factory automation [SPO 05]. 

This thesis is concerned with the fundamentals of robotics, including kinematics, 
motion planning, velocity kinematic, computer interfacing, and control. This chapter 
introduces the most important concepts in these subjects as applied to industrial robot 
manipulators. The majority of robot applications deal with industrial robot arms 
operating in structured factory environments so that a first introduction to the subject of 
robotics must include a rigorous treatment of the topics in this thesis. 

The word robot was introduced in 1920 be a Czech playwright which mean 
work. Basically, a robot is an autonomous device that use computer such as 
teleoperators, underwater vehicles, autonomous land rovers, etc [SPO 05].  

 

Figure (2.1): AL5B  Robotic Arm 

Figure (2.1) shows a typical robot that is essentially a mechanical arm operating 
under computer control. Such devices, though far from the robots of science fiction, are 
nevertheless extremely complex electro-mechanical systems whose analytical 
description requires advanced methods, presenting many challenging and interesting 
research problems. 

A robot manipulator is seen as more than just a series of mechanical linkages. 
Arm mechanism is only one element in a comprehensive automated system, is shown in 
Figure (2.2) which consists of an arm, external power source, end-of-arm tooling, 
external and internal sensors, computer interface, and control computer. Even the 
programmed software is considered as an integral part of the overall system, since the 
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manner in which the robot is programmed and controlled can have a major impact on its 
performance and subsequent range of applications. 

 

Figure (2.2): Components of Robotic System. 

Although there are many possible ways that use prismatic and revolute joints to 
construct kinematic chains, in practice only a few of these are commonly used. Here we 
briefly describe several arrangements that are most typical. 

2.1.1. Articulated Manipulator (RRR) 

Figure (2.3) shows the (ABB IRB1400) articulated manipulator which called a revolute 
manipulator [SPO 05]. The (RRR) means the type of joint is (Revolute – Revolute – 
Revolute) and (P) means the type of joint is (Prismatic) 

 

Figure (2.3): The ABB IRB1400 Robot.  

A common revolute joint design is the parallelogram linkage such as the 
motorman SK16, shown in Figure (2.4) in both of these arrangements joint axis z2 is 
parallel to z1 and both z1 and z2 are perpendicular to z0. This kind of manipulator is 
known as an elbow manipulator. The structure and terminology associated with the 
elbow manipulator are shown in Figure (2.5) and its workspace is shown in Figure (2.6) 

The revolute manipulator provides relatively large freedom of movement in a 
compact space; the elbow manipulator has several advantages that make it an attractive 
and popular design. The parallelogram linkage manipulator is that the actuator for joint 
3 is located on link 1. Since the weight of the motor is born by link 1, links 2 and 3 can 
be made more lightweight and the motors themselves can be less powerful. 
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Figure (2.4): The Motoman SK16 Manipulator. 
 

 

Figure (2.5): Structure of The Elbow Manipulator. 

 

Figure (2.6): Workspace of the Elbow Manipulator. 

2.1.2. Spherical Manipulator (RRP) 

The spherical manipulator can be obtained by replacing the third or elbow joint in the 
revolute manipulator by a prismatic joint, as shown in Figure (2.7). The term spherical 
manipulator derives from the fact that the spherical coordinates defining the position of 
the end-effector with respect to a frame whose origin lies at the intersection of the three 
z-axes are the same as the first three joint variables. Figure (2.8) shows the Stanford arm, 
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[SPO 05], one of the most well known spherical robots. The workspace of a spherical 
manipulator is shown in Figure (2.9). 

 

Figure (2.7): The Spherical Manipulator. 
 

 

Figure (2.8): The Stanford Arm. 

 

Figure (2.9): Workspace of the Spherical Manipulator. 

2.1.3. SCARA Manipulator (RRP) 

The SCARA arm (for Selective Compliant Articulated Robot for Assembly) shown in 
Figure (2.10) is a popular manipulator [SPO 05]. The SCARA has an RRP structure; it 
is quite different from the spherical manipulator in both appearance and in its range of 
applications. The SCARA has z0, z1, and z2 mutually parallel. Figure (2.11) shows the 
Epson E2L653S manipulator [SPO 05]. The SCARA manipulator workspace is shown 
in Figure (2.12) 
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Figure (2.10): The SCARA (Selective Compliant Articulated Robot for Assembly). 
 

 

Figure (2.11): The Epson E2L653S SCARA Robot. 

 

Figure (2.12): Workspace of the SCARA Manipulator. 

2.1.4. Cylindrical Manipulator (RPP) 

The cylindrical manipulator is shown in Figure (2.13).The first joint is revolute and 
produces a rotation about the base, while the second and third joints are prismatic. As 
the name suggests, the joint variables are the cylindrical coordinates of the end-effector 
with respect to the base. A cylindrical robot, the Seiko RT3300 [SPO 05], is shown in 
Figure (2.14), with its workspace shown in Figure (2.15). 
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Figure (2.13): The Cylindrical Manipulator. 

 

Figure (2.14): The Seiko RT3300 Robot. 
 

 

Figure (2.15): Workspace of the Cylindrical Manipulator. 

2.1.5. Cartesian Manipulator (PPP) 

A manipulator whose first three joints are prismatic is known as a Cartesian manipulator, 
shown in Figure (2.16). For the Cartesian manipulator, the joint variables are the 
Cartesian coordinates of the end-effector with respect to the base. An example of a 
Cartesian robot, from Epson-Seiko, [SPO 05] is shown in Figure (2.17). The workspace 
of a Cartesian manipulator is shown in Figure (2.18). 
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Figure (2.16): The Cartesian Manipulator. 
 

 

Figure (2.17): The Epson Cartesian Robot.  

 

Figure (2.18): Workspace of the Cartesian Manipulator. 

2.1.6. Parallel Manipulator 

A parallel manipulator has two or more independent kinematic chains connecting the 
base to the end-effector. Figure (2.19) shows the ABB IRB 940 Tricept robot [SPO 05]. 
The kinematic description of parallel robots is fundamentally different from that of 
serial link robots; therefore, requires different methods of analysis. 
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Figure (2.19): The ABB IRB940 Tricept Parallel Robot. 

2.2 Kinematic Modeling 

In robot simulation, system analysis needs to be done, such as the kinematics analysis, 
its purpose is to carry through the study of the movements of each part of the robot 
mechanism and its relations between itself. The kinematics analysis is divided into 
forward and inverse analysis. The forward kinematics consists of finding the position of 
the end-effector in the space knowing the movements of its joints as 

1 2( , , , )  [ , , , ]nF x y z R    , and the inverse kinematics consists of the determination 

of the joint variables corresponding to a given end-effector position and orientation as 

1 2( , , , )  , , , nF x y z R     . Figure (2.20) below shows a simplified block diagram of 

kinematic modeling. 

 

Figure (2.20): Kinematics Block Diagram  

A commonly used convention for selecting frames of reference in robotic 
applications is the Denavit-Hartenberg or D-H convention as shown in Figure (2.21). In 
this convention each homogenous transformation iT  is represented as a product of 

"four" basic transformations 

Forward 
Kinematics 

Geometric 
Parameters 

Position and Orientation of 
the end-Effector 

Joints Movements 

Inverse 
Kinematics 
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( , ) ( , ) ( , ) ( , )i i i i iT Rot z Trans z d Trans x a Rot x   (2.1)

 

Figure (2.21): DH Frame Assignment 

Where the notation ( , )iRot x  stands for rotation about ix  axis by i , 

( , )iTrans x a  is translation along ix  axis by a distance ia , ( , )iRot z   stands for rotation 

about iz  axis by i , and ( , )iTrans z d  is the translation along iz  axis by a distance di. 
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 (2.2) 

Where the four quantities ,  ,  ,  i i i ia d   are the parameters of link i and joint i. 

The Figure below illustrates the link frames attached so that frame {i} attached rigidly 
to link i. 

The various parameters in previous equation are given the following names: 

ia (Length) is the distance from 1 zi iz to  , measured along iz ; 

i (Twist), is the angle between 1 i iz and z  , measured about  ix ; 

id  (Offset), is the distance from 1to  i ix x   measured along iz ; and 

i (Angle), is the angle between 1and  i ix x  measured about iz ; 

In the usual case of a revolute joint, is called the joint variable, the other three quantities 
are the fixed link parameters.  

Another expression can be used where a homogeneous transformation matrix H 
represents a rotation by angle α about the current x-axis followed by a translation of a 
units along the current x-axis, followed by a translation of d units along the current z-
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axis, followed by a rotation by angle θ about the current z-axis, is given by H where H 
is given by: 

 , , , ,  x x a z d zH Rot Trans Trans Rot   (2.3) 

  

0

0 0 0 1

c s a

c s c c s ds

s s s c c dc

 

    

    

 
 
 
 
 
 


 

 (2.4) 

The homogeneous representation given in previous equation is a special case of 
homogeneous coordinates, which have been extensively used in the field of computer 
graphics. There, one is interested in scaling and/or perspective transformations in 
addition to translation and rotation. The most general homogeneous transformation 
takes the form 

 

3 3 3 1
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R d Rotation Translation
H

f s Perspective Scale factor
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n o a p
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 (2.5) 

Where the 3 by 3-augmented matrix, R3x3, represents the rotation, the 3 by 1 
augmented matrixes, d3x1, represents the translation; the f1x3 represents the perspective 
transformation and S1x1 is the factor of universal scale. 

The direct kinematics made from the composition of homogeneous 
transformation matrices, where each translation (prismatic joint) or rotations (rotation 
joint) correspond to one 4 by 4-augmented matrix: 

 1
1...   j j i

i j iT T T 
  (2.6) 

2.3 Simulation and Modeling Tools  

Robot Simulation Software (RSS) and on-off line programming seem likely to be an 
important issue in robotics research because it is essential for evaluating and predicting 
the behavior of a robot and have increasingly important role in the evolution of 
manufacturing automation. Much attention has been devoted to investigate and to 
develop the on-off line programming of industrial robots. The programming trends and 
challenges in the development of the RSS can be divided into two components, the 
graphical user interface (GUI) and the control software. Started with the use of structure 
programming language, followed with the use of third party package, object 
programming language, web-programming tools, and artificial intelligence 
programming language, challenge has been a concern among software developers in 
order to produce better RSS that cover these two components. There are many ways for 
designing a graphical user interface, for drawing 3D models and developing real time 
software simulators for robotics manipulators. In addition, many excellent tools can be 
used for programming these simulators such as: 

1. MATLAB Virtual Realty toolbox with Simulink and V-Realm Builder.  
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2. The AutoCAD 3D program is used to design the robot graphically; 
CAD2MATLAB function can be used to convert the resulting graph to an 
acceptable format by MATLAB, function takes a CAD file in (.stl or .slp) 
format and converts it to MATLAB.  

3. Using OpenGL graphics library under visual C++ or MATLAB. 
4. Other well-known tools on the web like UltraArc, CimStation, RobotScrips, 

ROPSIM, RobotStudio and Dymola. 

The increasing interest in 3D graphics has gone hand in hand with the 
development of a new generation of 3D graphics file formats. Although 3D package 
could be expected to support tens, if not hundreds of file formats, supporting every 
format is impossible. Data exchanging between software packages is difficult or 
impossible. The best format to use for interchanging data often depends on the type of 
3D application being used, for example, in order to move data between 3D CAD 
programs such as AutoCAD, ProE or I-DEAS there are several graphics file formats 
available, for example, the Autodesk DXF file format, IGES file format and ACIS SAT 
file format. 3D Modelers’ and animators must also consider file formats, for example, a 
common ‘in-between’ file format from 3D Studio Max to Maya is the DXF for moving 
geometry between the two packages. 

In this research, the file type DWG or DXF will be exported from 3D AutoCAD. 
Then by using the PolyTrans program, it can be converted to SLP file, finally we can 
deal easily with this format using MATLAB function “CAD2MAT”. 

Visual programming is a rather wide concept. In this case however, state of the 
art visual programming systems are only interesting if they are applicable to robot 
programming. This approach turned out to present two types of topics, general-purpose 
visual programming software and visual programming tools concentrated towards the 
robot process industry. The application used in this thesis presented by visual 
programming tools. They are intended for various industrially related tasks, such as the 
robot industry, but need not be used specifically for programming robots. Some visual 
programming tools will be introduced in the following subsections. 

2.3.1. UltraArc 

UltraArc is a simulation and offline programming solution, with calibration tools that let 
users adjust the simulation model to accurately reflect real world device relationships. 
The interface lets programmers easily modify robot devices to achieve very accurate 
robot motion results [ULT].  

UltraArc holds a library of arc welding robots and weld guns, including the 
latest robots from ABB, Fanuc and Motoman [ULT]. It also includes a built-in CAD 
package to create custom work cell components and supports direct import of CAD files 
via IGES, DXF and direct translations. Robot programs can then be automatically 
generated from information contained in weld details. There is also support for robot 
controller-specific weld process information (seam tracking, seam searching, speeds, 
currents, voltages, etc). 

2.3.2. RobotStudio 

RobotStudio is a software tool for simulation and offline programming for robots. It is 
built on the ABB Virtual Controller, an exact copy of the real software that runs the 
robots in production; hence provides very realistic simulations, using real robot 
programs and configuration files [ROB]. 
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2.3.3. CimStation Robotics  

CimStation Robotics program is similar to  RobotStudio. The advantage of CimStation 
is that  supports many different robot suppliers and their products [CIM]. 

2.3.4. ROPSIM 

ROPSIM is a PC based model driven robot simulation system with 3D visualization. 
The simulation is performed virtually and allows production simulation on screen. It is a 
robot programming system for use in design, layout, production and maintenance of 
work cells in integrated production systems [ROP]. 

2.3.5. RobotScript  

RobotScrips it produces code textually, but because it operates in a Windows 
environment, the end-user has the advantage of using any third-party software to 
enhance the operation of the robot cell. It also provides an intuitive, graphical user 
interface to reduce operator training and minimize errors. It can easily be customized 
using the Software Development Kit to provide a standard, enterprise-wide operator 
interface [ROB]. 

2.3.6. Dymola  

Dymola is a general purpose modeling program and language, appropriate for building 
all sorts of mechanical and electrical systems. It has an object-oriented approach, 
enabling several of the powerful characteristics of such languages, e.g. hierarchical 
structures, model classes and even inheritance [DYM].  

Dymola is built on using equations for describing modeling details. Then the 
equations are automatically solved and interpreted to symbolical representations. These 
models and symbols can then be generated on different formats. Its supports C and 
FORTRAN and is available for UNIX and Windows platforms [DYM]. 

2.3.7. V-Realm Builder 

Virtual Reality (VR) is a system that allows one or more users to move and react in a 
computer generated environment. The basic VR systems allow the user to gather visual 
or sound information using computer screens, stereoscopic displays or headphones. V-
Realm Builder, which came with MATLAB Virtual Reality Toolbox, was used to make 
the modifications. A VR sink was then used in the model to interface with the 
workstation [MAT]. 

V-Realm Builder made the design of the workstation much simpler. It has 
several shapes in the program that can be resized and rotated in order fit the 
requirements of the desired object. Various patterns and colors are also available. The 
most helpful element of the software is the definition of parent and child classes. In this 
way pieces can be combined into a more complex component. All the individual parts 
then use the larger module as a frame of reference. Consequently, the component can be 
moved or rotated. 

2.3.8. OpenGL 

OpenGL is API (Application Program Interface) that does not depend on hardware’s 
and Operation System (OS). It functions with high performance for the display of three 
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dimension figures though it is possible to use it to display two dimension Figures. It is 
used for real-time generation of 3D-CG images of the game and so on [OPE]. 

2.3.9. Other File Format Converters 
There are few graphics file format converters available on the market now. The most 
common is PolyTrans from Okino [POL], which, according to the most recent plugging 
have been seen does not yet, translate animation and does not support the ASE file 
format. PolyTrans is also very expensive; however, it is widely known and used 
throughout the industry. There are several websites devoted to plugging for the program 
and it may be constantly updated for new file types.  

Another, more recent file format converter, 3D Exploration is available as 
shareware yet covers numerous file types including MAX, ASE and OBJ file format, 
however, it only supports information on objects, materials, cameras and light sources, 
all other information is skipped. Similarly, most other file converters support neither the 
file types used, often do not support any Maya format, other than OBJ, format and do 
not deal with animation at all.  

PolyTrans, for example, contains the NuGraf rendering system and can be used 
to perform various actions on polygonal objects, etc. and render them entirely within the 
package. 3D Exploration contains a simple OpenGL interface to view the workspace; 
however, it contains virtually no tools to modify the scene.  

2.4 Basic Categories of Programming Languages  

Virtually all robots are programmed with some kind of robot programming language. 
These programming languages are used to command the robot to move to certain 
locations, to output signal, and to read inputs. The programming language is what gives 
robots flexibility. When learning any programming language, like a robot language or a 
computer language, one of the most difficult tasks is learning what the commands are 
and how to use them.  

To get an overview of different types of robot programming languages [MIK 02], 
it is appropriate to put them in three basic categories: 

1. Specialized robot languages. These languages have been developed specifically 
for robots. The commands found in these languages are mostly motion 
commands with minimal logic statements available. Most of the early robot 
languages were of this type, although many still exist today. VAL1 is an 
example of such a robot language [MIK 02].  

2. Robot library for a new general-purpose language. This is based on creating new 
general- purpose language, then adding specific robot commands. They are 
generally more capable than a specialized language, since they tend to have 
better logic testing capabilities. KAREL is a good example of robot 
programming language from Fanuc Robotics [MIK 02]. 

3. Robot library for an existing computer language. These languages are developed 
by creating extensions to already existing popular computer programming 
languages. Consequently, the robot languages resemble traditional computer 
programming languages, providing the same power as these widely used 
languages. RobotScript is an example of this type of language [MIK 02].  



Chapter 2: Theoretical Background 
 

 19

Today, industrial robots are programmed in one of two possible ways. In reality, these 
techniques are often combined, resulting in what is known as hybrid programming. The 
two main techniques are described shortly below. 

2.4.1. Online Programming  

Online programming means creating the control program directly on the robot’s 
onboard computer; hence, by manually steering the robot to different positions using a 
jog

 

or similar control mechanism. Each desired position contributes to the code as a 
number of coordinates. An advantage with online programming is exactness and few 
later corrections due to programming the actual robot in its actual real-world 
environment. The main drawbacks of this method are that it is time consuming and it 
has long production stops. 

2.4.2. Offline Programming  

In contrast to online programming, offline programming means creating the control 
program on a detached unit, such as a PC. This involves either manual editing of code 
in a text editor, or automatically generated code using a modeling environment. Once 
the program is ready for deployment, it is moved to the robot’s computer for manual 
correction and tuning. An advantage with this method is that robots can be programmed 
before installation and stay in production while being reprogrammed; meaning 
production breaks usually are significantly shortened. On the other hand, manual 
correction sometimes gets very extensive, and a programmer is also required to write 
the code offline. 

The differences between the on-line and off-line programming and the practical 
characteristics of off-line programming are shown in Table 2.1.  

Table (2.1): Differences between the on-line and off-line programming 

ON-LINE OFF-LINE 
ON-LINE 

PROGRAMMING 
ADVANTAGES 

OFF-LINE 
PROGRAMMING 

DISADVANTAGES 

Sequential operation 
mode 

Parallel working 
mode 

Increases robot’s 
efficiency 

High initial costs 

Operational robots 
requested 

No physical robot 
and workcell’s 
components 

Provides a safe 
environment for 
simulation 

Fast information 
exchanges between 
engineering 
departments 

Attention with errors 
Early examinations 
and optimizations. 

Integrated CAD-CAM 
systems 

Reorganization 

Requires staff for 
supervising 

Quality information 
regarding the process 

Simplification of 
complex tasks 

Necessity of robot’s 
calibration in real 
working environment 

Extra time for 
workcell’s physic 
arrangement 

Compound vision of 
the simulation. 

Verification of 
programs before 
loading it into robot 
controller Fast and easy 
optimization 

Low precision 

 Saving costs 
Analysis provided by 
simulation software 

Software errors and 
programming bugs 
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CHAPTER 3 KINEMATICS 

3.1 Introduction  

Kinematics is the description of motion without regard to the forces that cause it. It 
deals with the study of position, velocity, acceleration, and higher derivatives of the 
position variables.  

The kinematics solutions of any robot manipulator are divided into tow solution, 
the first one is the solution of Forward kinematics, and the second one is the inverse 
kinematics solution. Forward kinematics will determine where the robot’s manipulator 
hand will be if all joints are known. Where the inverse kinematics will calculate what 
each joint variable must be if the desired position and orientation of end-effector is 
determined. Hence, Forward kinematics is defined as transformation from joint space to 
Cartesian space where as Inverse kinematics is defined as transformation from Cartesian 
space to joint space. 

3.2 Direct/Forward Kinematics 

The forward kinematics problem can be stated as follows: Given the joint variables of 
the robot, determine the position and orientation of the end-effector. Since each joint 
has a single degree of freedom, the action of each joint can be described by a single 
number, i.e. 1,2….,n, the angle of rotation in the case of a revolute joint. The 
objective of forward kinematic analysis is to determine the cumulative effect of the joint 
variables. 

Suppose a robot has n+l links numbered from zero to n starting from the base of 
the robot, which is taken as link 0. The joints are numbered from one to n, and zi is a 
unit vector along the axis in space about which the links i-1 and i are connected. The i-
th joint variable is denoted by q, In the case of a revolute joint, q, is the angle of rotation, 
while in the case of a prismatic joint q, is the joint translation. Next, a coordinate frame 
is attached rigidly to each link. To be specific, we choose frames 1 through n such that 
the frame i is rigidly attached to link i. Figure (3.1) illustrates the idea of attaching 
frames rigidly to links in the case of an AL5B robot. 

 

Figure (3.1): AL5B Robot Arm Frame Assignment 
1i

iT   is a homogenous matrix which is defined to transform the coordinates of a 

point from frame i to frame i-1. The matrix  1i
iT   is not constant, but varies as the 
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configuration of the robot is changed. However, the assumption that all joints are either 
revolute or prismatic means that 1i

iT   is a function of only a single joint variable, 

namely qi. In other words, 

 1 1( ) i i
i i iT T q   (3.1) 

The homogenous matrix that transforms the coordinates of a point from frame i 
to frame j is denoted by j

iT  (i > j). Denoting the position and orientation of the end-

effector with respect to the inertial or the base frame by a three dimensional vector 0
nd  

and a 3x3 rotation matrix 0
nR , respectively, we define the homogenous matrix 
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 (3.2) 

Then the position and orientation of the end-effector in the inertial frame are given by 
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Each homogenous transformation 1i
iT  is of the form 
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Hence 
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 (3.5) 

The matrix j
iR expresses the orientation of frame i relative to frame j (i > j) and 

is given by the rotational parts of the j
iT -matrices (i > j) as 

 1
1...

j j i
i j iR R R 

  (3.6) 

The vectors j
id  (i > j) are given recursively by the formula 

 1
1 1

j j j i
i j i id d R d 

    (3.7) 

3.2.1. Assigning the Coordinate Frames 

AL5B has five rotational joints and a moving grip as shown in Figure (3.1). Joint 1 
represents the shoulder and its axis of motion is z1. This joint provides a rotational 1 
angular motion around z1 axis in x1y1 plane. Joint 2 is identified as the Upper Arm and 
its axis is perpendicular to Joint 1 axis. It provides a rotational 2 angular motion around 
z2 axis in x2y2 plane. z3 axes of Joint 3 (Forearm) and Joint 4 (Wrist) are parallel to Joint 
2 z-axis; they provide 3 and 4 angular motions in x3y3 and x4y4 planes respectively. 
Joint five are identified as the grip rotation. Its z5 axis is vertical to z4 axis and it 
provides 5 angular motions in x5y5 plane [MOH 09]. A graphical view of all the joints 
was displayed in Figure. (3.2). 
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Figure (3.2): Coordinate Frames of AL5B Robotic Arm 

A rigid body is completely described in space by its position to a reference frame 
(translation) and its orientation. 

3.2.2. AL5B DH Parameters 

As explained in chapter 2 many methods can be used in the direct kinematics 
calculation. The Denavit-Hartenberg analysis is one of the most used, in this method the 
direct kinematics is determined from some parameters that have to be defined, 
depending on each mechanism. However, it was chosen to use the homogeneous 
transformation matrix. In this, analysis, once it is easily defined one coordinate 
transformation between two frames, where the position and orientation are fixed one 
with respect to the other it is possible to work with elementary homogeneous 
transformation operations. D-H parameters for AL5B defined for the assigned frames in 
Table 3.1. 

 Table (3.1): DH Parameter for AL5B Robot Arm 
i 1i   1ia   id  i  

1 0 0 d1 1
* 

2 90 0 0 2
* 

3 0 a3 0 3
* 

4 0 a4 0 ( 4 -90) * 

5 -90 0 d5 5
* 

6 0 0 0 Gripper 
 

By substituting the parameters from Table (3.1) into equation (2.4), the transformation 
matrices T1 to T6 can be obtained as shown below. For example, T1 shows the 
transformation between frames 0 and 1 (designating iC as cos  i and  iS as sin i  etc). 
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1 1

1 10
1

1

0 0

0 0

0 1 0

0 0 0 1

c s

s c
T

d

 

 

 
 
   
 
  

 (3.8) 

 

2 2

2 2

1
2

0 0

0 0 1 0

0 0

0 0 0 1

c s

T
s c

 

 

 
 

   
 
  

 (3.9) 

 

3 3

3 3

3

2
3

0

0 0

0 0 1 0

0 0 0 1

c s a

s c
T

 

 

 
 
   
 
  

 (3.10) 

 

4 4

4 4

4

3
4

0

0 0

0 0 1 0

0 0 0 1

c s a

s c
T

 

 

 
 
   
 
  

 (3.11) 

 

5 5

5 5

54
5

0 0

0 0 1

0 0

0 0 0 1

c s

d
T

s c

 

 

 
 
   
 
  

 (3.12) 

 

5 5

5 5

0 0

0 0

0 0 1 0

0 0 0 1

Gripper

c s

s c
T

 

 

 
 
   
 
  

 (3.13) 

 

Using the above values of the transformation matrices; the link transformations can be 
concatenated (multiplied together) to find the single transformation that relates frame 
(5) to frame (0): 

 0 0 1 2 3 4
5 51 2 3 4

0 0 0 1

x x x x

y y y y

z z z z

n o a p

n o a p

n o a p
T T T T T T

 
 
 
 
 
 

  (3.14) 

The transformation given by equation (3.14) is a function of all 5 joint variables. From 
the robots joint position, the Cartesian position and orientation of the last link may be 
computed using above equation (3.14). 

The first three columns in the matrices represent the orientation of the end effectors, 
whereas the last column represents the position of the end effectors [MOH 09]. The 
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orientation and position of the end effectors can be calculated in terms of joint angles 
using: 

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

2 3 2 3 4 2 3 2 3 4 5

  (( - ) (- - ) )  

   ((s c c -s s s )c +(-s c s -s s c )s )c -c s

   ((s c +c s )c +(-s s +c c )s )c

x

y

z

n c c c c s s c c c s c s c s c s s

n

n

  




 (3.15) 

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

2 3 2 3 4 5 2 3 2 3 4

  -((c c c -c s s )c +(-c c s -c s c )s )s +s c

  -((s c c -s s s )c +(-s c s -s s c )s )s -c c  

 (c c -s s )s )s -((s c +c s )c

x

y

z

o

o

o







                                                 (3.16) 

1 2 3 1 2 3 4 1 2 3 1 2 3 4

1 2 3 1 2 3 4 1 2 3 1 2 3 4

2 3 2 3 4 2 3 2 3 4

 -(c c c -c s s )s +(-c c s -c s c )c

 -(s c c -s s s )s +(-s c s -s s c )c

 (c c -s s )c -(s c +c s )s

x

y

z

a

a

a







                                                                  (3.17)

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 1 2 3 4 1 2 3

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 1 2 3 4 1 2 3

2 3 2 3 4 2 3 2 3 4 5 2 3 2 3 4 2 3

  (-( - ) (- - ) ) ( - )

 (-( - ) (- - ) ) ( - )

  (-( ) (- ) ) ( )

x

y

z

d c c c c s s s c c s c s c c d c c c c s s a c c a

d s c c s s s s s c s s s c c d s c c s s s a s c a

d s c c s s s s c c c d s c c s a s a d

   

   

        1

           (3.18) 

3.3 Inverse kinematics 

Inverse Kinematics (IK) analysis determines the joint angles for desired position and 
orientation in Cartesian space. Total transformation matrix in equation. (3.14) will be 
used to calculate inverse kinematics equations. IK is more difficult problem than 
forward kinematics. 

The solution of inverse kinematic is more complex than direct kinematics and 
there is not any global analytical solution method. Each manipulator needs a particular 
method considering the system structure and restrictions. There are two solutions 
approaches namely, geometric and algebraic used for deriving the inverse kinematics 
solution. Let’s start with geometric approach. 

3.3.1. Geometric Approach 

Using IK-Cartesian mode, the user specifies the desired target position of the gripper in 
Cartesian space as (x, y, z) where z is the height, and the angle of the gripper relative to 
ground, ψ (see Figure 3.4), is held constant. This constant ψ allows users to move 
objects without changing the object’s orientation (the holding a cup of liquid scenario). 
In addition, by either keeping ψ fixed in position mode or keeping the wrist fixed 
relative to the rest of the arm, the inverse kinematic equations can be solved in closed 
form as we now show for the case of a fixed ψ [MOH 09]. 

The lengths d1, a3, a4 and d5 correspond to the base height, upper arm length, 
forearm length and gripper length, respectively are constant. The angles θ1, θ2, θ3, θ4 
and θ5 correspond to shoulder rotation, upper arm, forearm, wrist, and end effector, 
respectively. These angles are updated as the specified position in space changes. We 
solve for the joint angles of the arm, θ1:4 given desired position (x, y, and z) and ψ 
which are inserted by the user. 

From Figure (3.3), we clearly see that  1  atan2 y,  x     and the specified 

radial distance from the base d are related to x and y by: 
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2 2

1

1

cos( )

sin( )

d d

d

d

d x y

x d

y d




 




 (3.19) 

 

Figure (3.3): Top View of Robot. 

Moving now to the planar view in Figure (3.4), we find a relationship between joint 
angles θ2, θ3 and θ4 and ψ as follows: 

 2 3 4        (3.20) 

Since ψ is given, we can calculate the radial distance and height of the wrist joint: 

 

4 5

4 5

4 3 2 4 2 3

4 3 2 4 2 3 1

cos( )  

sin( )

cos( ) cos( )  

sin( ) sin( )

d

d

r r a

z z a

or

r a a

z a a d




  
  

 
 

  
   

 (3.21) 

Now we want to determine θ2 and θ3. We first solve for α, β and s (from Figure 3.4) 
uses the law of cosines as: 

 

2 2 2
3 4 3

4 1 4

2 2
4 1 4

tan 2( ,2 )

tan 2( , )

( )

a s a a a s

a z d r

s z d r



  
 

  

 (3.22) 

With these intermediate values, we can now find the remaining angle values as: 

 
2

2 2 2
3 3 4 3 4

4 2 3

tan 2( ,2 )a s a a a a

  


   

 

  

  

 (3.23) 
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Figure (3.4): Planar View of AL5B Robot Arm. 

3.3.2. Analytical (algebraic) Approach   

Using the X, Y and Z resultants gotten in the direct kinematics: 

 1 3 2 4 23 5 234[ ]x c a c a c d c    (3.24) 

 1 3 2 4 23 5 234[ ]y s a c a c d c    (3.25) 

 5 234 4 23 3 2 1[ ]z d c a s a s d     (3.26) 

The simplified equation is gotten: 

 2 2 2 2
3 2 4 23 5 234(3.24) (3.25) a c a c x y d c        (3.27) 

The first joint movement, defined by θ1, can be calculated using geometric parameters 
only: 

1 tan 2( , )a y x   

Now we can calculate θ3, by using equation (3.26): 

 3 2 4 23 5 234 1(3.26) a s a s z d s d      (3.28) 
2 2 2 2 2 2

2 2 5 234 1 5 234 3 4

3 4

( ) ( )
(3.27) (3.28) 3

2

z d s d x y d c a a
c

a a

       
    (3.29) 

 

 
234 234

234 2 3 4 234 2 3 4

,

cos( ), sin( )

c c s s

where

c s

 

     

 

     
 

 

2 2 2 2 2 2
5 1 5 3 4

3
3 4

2
3 3

( ) ( )

2

1

z d s d x y d c a a
c

a a

s c

        
 

  

 (3.30) 
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 3 3 3tan 2( , )a s c   (3.31) 

After calculate θ3 we can find θ2 by:    

 

2

2 2
5 1 5

4 3 3 4 3

tan 2( , )

tan 2( , )

a z d s d x y d c

a a s a a c

 

  





 

     

 

 (3.32) 

 2 2
2 5 1 5 4 3 3 4 3tan 2( , ) tan 2( , )a z d s d x y d c a a s a a c           (3.33) 

 2 3 4       (3.34) 

 4 2 3        (3.35) 

We can find θ5 by using total transformation matrix in equation (3.14): 

 

5 1 11 1 21

5 1 12 1 22

11 1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

12 1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

21 1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

22 1 2 3 1

-

-

  (( - ) (- - ) )

  - (( - ) (- - ) )

  (( - ) (- - ) ) -

  - (( -

s s r c r

c s r c r

r c c c c s s c c c s c s c s c s s

r c c c c s s c c c s c s c s s s c

r s c c s s s c s c s s s c s c c s

r s c c s



  

  
 
 2 3 4 1 2 3 1 2 3 5 1 5) (- - ) 4) -s s c s c s s s c s s c c

 (3.36) 

 5 5 5tan 2( , )a s c   (3.37) 

Another algebraic solution by using total transformation matrix in equation 
(3.14), we can find the inverse kinematics solution for an AL5B manipulator. 

 

11 12 13

21 22 231 2 3 4 5
0 1 2 3 4

31 32 33

* * * *

0 0 0 1

r r r x

r r r y
T T T T T T G

r r r z

 
 
   
 
 
 

 (3.38) 

To find the inverse kinematics solution for the first joint θ1 as a function of the 
known elements of  

 
end effector

baseT  , the link transformation inverses are remultiplied as 

shown in equation (3.39): 

 
1

1 11 5 1 1 2 3 4 5
0 0 0 0 2 3 4* * * * * *T T T T T T T T

 
            (3.39) 

Where
11 1

0 0*T T I


        , I is identity matrix. In this case, the above equation is given 

by
1

11 5 2 3 4 5
0 0 2 3 4* * * *T T T T T T


    ; the solution of this equation is explained in equation 

(3.40). 

1 11 1 21 1 12 1 22 1 13 1 23 1 1 11 12 13 14

1 11 1 21 1 12 1 22 1 13 1 23 1 1 21 22 23 24

31 32 33 1 31 32 33 34

- - - -

 -

0 0 0 1 0 0 0 1

c r s r c r s r c r s r c x s y

s r c r s r c r s r c r s x c y

r r r z d

   
   
   

      
         
   
   
   

 (3.40) 
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5 5
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 (3.41) 

From equation (3.40), (3.41) we find: 

1 1- 0c y s x   

 1 tan 2( , )a y x   (3.42) 

To find the other variables, the following equations are obtained as a similar manner. 

1

1

1

11 2 5 3 4 5
0 0 2 3 4

11 2 3 5 4 5
0 2 0 3 4

11 2 3 4 5 5
0 2 3 0 4

* * * *

* * * *

* * * *

T T T T T T

T T T T T T

T T T T T T







   

   

   

 

Now, we can compute θ2 from the above equation:  

1 1 234 5 23 4 2 3

1 1 234 5 2 3 4 3

-

- ( )

c x s y s d c a c a

c x s y s d c c a a

   
   

 

1 1 234 5
2
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z d c d
s

s a a

  
  

 




 

 2 2 2tan 2( , )a s c   (3.43) 

Similar we can find θ3: 
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1 1 234 5 23 4 2 3
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 3 3 3tan 2( , )a s c   (3.44) 

234 1 13 1 23

234 33

-( )

c

s c r s r

r

 


 

 234 234 234tan 2( , )a s c   (3.45) 

In this context, θ234 (WARTG=Wrist Angle Relative to Ground) is user supplied 
by entering both xyz position coordinates of the selected target position on the 
workspace and a constant WARTG value. Equation [3.40] and [3.41] elements of the 
resultant matrix equation give: 

5 1 11 1 21

5 1 12 1 22

-

-

s s r c r

c s r c r




 

 5 5 5tan 2( , )a s c   (3.46) 

Similar multiplication procedures for joints 4 also, yields’ θ4: 

 1
01 12 23 34 45( * * ) *T T T G T T   (3.47) 

123 13 23 1 23 23 33 4 5 4 5 4 4 5 4

23 1 13 123 23 23 33 4 5 4 5 4 4 5

5 5

* * * ( -1) -( -1) - -

* * - - *  -

* * * * 0 0

0 0 0 1 0 0 0 1

c r c s r s r c c c s s s d a

s c r s r c r s c s s c c d

s c

     
      
   
   
   

 

4 123 13 23 1 23 23 33

4 23 1 13 123 23 23 33

-( )

-( - )

s c r c s r s r

c s c r s r c r

  

 
 

Which results, 

 4 4 4tan 2( , )a s c   (3.48) 

In summary, θ1, θ2, θ3, θ4, θ5 are given by (3.42), (3.43) , (3.44), (3.48), (3.46), the initial 
values of these angles are given by the user defining the initial configuration of the 
robot arm. 
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CHAPTER 4 DIFFERENTIAL KINEMATICS AND 
STATICS 

4.1 Velocity Kinematics/Arm Jacobian 

The Jacobian is one of the most important quantities in the analysis and control of robot 
motion. It is used for smooth trajectory planning and execution in the derivation of the 
dynamic equation. To investigate target with specified velocity, each joint velocity at 
the specified joint positions needs to be found. This is accomplished using Jacobian, 
which is used to relate joint velocities to the linear and angular velocities of the end-
effector [SPO 05]. The relationships between joint velocities , and the linear and 
angular velocities, p and ω respectively, of the end effector: 

 ( )Pp J     (4.1) 

 ( )ww J     (4.2) 

 
1

where   

n






 
   
  

  (4.3) 

The above equations are combined to form J, which relates both linear, and 
angular velocity: 

 
 ( )v J     (4.4) 

Where J(θ) is in the form 

 
1

1

6
p pn

w wn

J J

J n

J J

 
   
  

 (4.5) 

The number of columns of the Jacobian represents the number of degrees of 
freedom or links of the manipulator. There are always three rows for linear velocity in 
the x, y and z directions, and three for angular velocity. Hence, for a six degree of 
freedom manipulator, the Jacobian is a 6 by 6 square matrix. The Jacobian can be 
calculated from the following equation. 

 

1 1

1

1

( )     joint 

                       joint 

                      joint 

0                         joint 

i n i
vi

i

i
wi

z o o for revolute i
J

z for prismatic i

z for revolute i
J

for prismatic i

 





 
 



 


 (4.6) 

Where: viJ  angular velocity and wiJ  linear velocity. For the AL5B robot arm the 

Jacobian matrix is equal 6x5 [MOH 09].  

           0 5 0 1 5 1 2 5 2 3 5 3 4 5 4

0 1 2 3 4

z o o z o o z o o z o o z o o
J q

z z z z z

           
  
 

 (4.7) 

From the forward kinematic we can find: 
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 (4.8) 

Moreover, we can find: 
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 (4.9) 

Now we can write the Jacobian matrix as shown in equation (4.10): 
    1 2 3 4 5J q J J J J J  (4.10) 
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 (4.12) 
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 (4.14) 
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 (4.15) 

4.2 Kinematic Singularities 

The Jacobian can also be used to indicate possible configurations at which singularities 
are present. Singularities are manipulator configurations in which one or more degrees 
of freedom are made redundant. This reduces the ability of the robot to move in 3D 
space close to a singularity, even though the area could be well within its workspace. In 
order to calculate the joint velocities necessary to produce a given Cartesian velocity the 
Jacobian matrix is inversed. If the inverse Jacobian is applied close to a singularity, the 
joint velocities approach infinity. For this reason, it is essential that the robot be 
designed so that it operates away from singularities, both boundary and internal. This is 
particularly important if the inverse Jacobian is to be calculated in a real time system. 

The rank of a matrix is not necessarily constant. Indeed, the rank of the manipulator 
Jacobian matrix will depend on the configuration q. Configurations for which the rank 
J(q) is less than its maximum value are called singularities or singular configurations. 
Identifying manipulator singularities is important for several reasons: 

 Singularities represent configurations from which certain directions of motion 
may be unattainable. 

 At singularities, bounded end-effector velocities may correspond to unbounded 
joint velocities. 

 At singularities, bounded end-effector forces and torques may correspond to 
unbounded joint torques. 

 Singularities usually (but not always) correspond to points on the boundary of 
the manipulator workspace, that is, to points of maximum reach of the 
manipulator. 

 Singularities correspond to points in the manipulator workspace that may be 
unreachable under small perturbations of the link parameters, such as length, 
offset, etc. 

 Near singularities there will not exist a unique solution to the inverse kinematics 
problem. In such cases, there may be no solution or there may be infinitely many 
solutions. 

At a singular configuration, the manipulator loses one or more degrees of freedom. The 
singular configurations are classified into two categories based on the location of end 
effector in the workspace. 

(i) Boundary singularities 

The boundary singularities occur when the end effector is on the boundary of the 
workspace, that is, the manipulator is either fully stretched out or fully retracted. For 
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example, consider the case of two links, 2-DOF planar arm fully stretched out, as shown 
in Figure (4.1). In this configuration, two links are in a straight line and the end effector 
can be moved only in a direction perpendicular to the two links because it cannot move 
out of the workspace. Thus, the manipulator loses one degree of freedom. A similar 
situation will occur with 2 equal 180. Boundary singularities can be avoided by 
ensuring that the manipulator is not driven to boundaries of the reachable workspaces 
during its work cycle [SPO 05]. 

 

Figure (4.1): 2-DOF planar manipulator fully stretched out 
(ii) Internal singularities 

Internal singularities as shown in Figure (4.2) occur when the end effector is located 
inside the reachable workspace of the manipulator. These are caused when two or more 
joint axes become collinear or at specific end effector configurations [SPO 05].  

 

Figure (4.2): Internal Singularities Type 

In all the situations, it is essential that singularities are avoided. Therefore, one 
important criterion for a good design of manipulator configuration is to minimize the 
singularities. 

4.2.1. Computation of Singularities 

The computation of internal singularities can be carried out by analyzing the rank of the 
Jacobian matrix. The Jacobian matrix loses its rank becomes ill conditioned at values of 
joint variables q at which its determinant vanishes, that  means if the Jacobian is a 6 × n 
matrix and a configuration q is singular if and only if: 
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 det  ( ) 0J q   (4.16) 
If we now partition the Jacobian J into 3x3 blocks as 

   11 12

21 22

| |
J J

J Jp Jo
J J

 
   

 
 (4.17) 

As the singularities are typical of configuration and are not dependent on frames 
chosen for kinematic analysis, the origin of the end effector frame can be chosen at the 
end of arm point this will make 12J = 0. In such a situation computation of determinant is 

greatly simplified, as  

11 22J J J  

Hence, for a manipulator with a spherical wrist, the arm singularities are found 
from 11 0J  , and wrist singularities are found from 22 0J  . However, in our case the 

Jacobian matrix is non-square then we can find the det J (q) by using the pseudo inverse 
[SPO 05]. Let A be an m × n matrix, and let A  be the pseudo inverse of A. If A is of 
full rank, then A can be computed as:  

1

1

1

[ ]

[ ]

T T

T T

A AA m n

A A m n

A A A m n



 



 
 
 

 

Then by applying the MATLAB function (pinv), the non square matrix can be 
solved. 

4.3 Inverse Velocity and Acceleration 

The Jacobian relationship  

  Jq    (4.18) 

specifies the end-effector velocity   that will result when the joints move with velocity 
q . Equation (4.18) represents the forward differential motion model or differential 
model presented schematically in Figure (4.3), which is similar to the forward kinematic 
model. Note that the Jacobian J(q) is a function of the joint variables [SPO 05]. 

 

Figure (4.3): The Forward Differential Motion Model 

The inverse velocity problem is the problem of finding the joint velocities q that 
produce the desired end-effector velocity. It is perhaps a bit surprising that the inverse 
velocity relationship is conceptually simpler than inverse position. When the Jacobian is 
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square (i.e.,   n nJ R  ) and nonsingular, this problem can be solved by simply 
inverting the Jacobian matrix to give 

 1  q J   (4.19) 

For manipulators that do not have exactly six links, the Jacobian cannot be inverted. In 
this case, there will be a solution to equation (4.18) if and only if ζ lies in the range 
space of the Jacobian. This can be determined by the following simple rank test. A 
vector ζ belongs to the range of J if and only if 

 ( )   [ ( ) | ]rank J q rank J q   (4.20) 

In other words, equation (4.18) may be solved for q  nR  provided that the rank of the 
augmented matrix  [ ( ) | ]J q   is the same as the rank of the Jacobian J (q). This is a 
standard result from linear algebra, and several algorithms exist, such as Gaussian 
elimination, for solving such systems of linear equations. For the case when n > 6 we 
can solve for q using the right pseudo inverse of J. 

4.4 Force/Torque Relationship  

Interaction of the manipulator with the environment will produce forces and moments at 
the end-effector or tool. Let F = (Fx, Fy, Fz, nx, ny, nz)

 T represents the vector of forces 
and torques at the end-effector, expressed in the tool frame. Thus Fx, Fy, Fz are the 
components of the force at the end-effector, and nx, ny, nz are the components of the 
torque at the end-effector [SPO 05]. 

Let τ denote the vector of joint torques, and let δX represents a virtual end-
effector displacement caused by the force F. Finally, let δq represents the corresponding 
virtual joint displacement. These virtual displacements are related through the 
manipulator Jacobian J (q) according to 

 ( ) .x J q q   (4.21) 

The virtual work δw of the system is 

   .T Tw F X q      (4.22) 

Substituting (4.21) into (4.22) yields 

 ( -  )T Tw F J q    (4.23) 

This is equal to zero if the manipulator is in equilibrium. Since the generalized 
coordinate q is independent, we have the equality 

  ( ) .TJ q F   (4.24) 

In other words, the end-effector forces are related to the joint torques by the transpose 
of the manipulator Jacobian according to (4.24). Figure (4.4) shows the AL5B 
manipulator with a force.  

   T

X Y z x y zF ,  F ,  F ,n ,  n ,  nF   (4.25) 

applied at the end effector. The Jacobian of this manipulator is given by equation (4.10). 
The resulting joint torques 1 2 3 4 5[     ]T      is then given by equation (4.24). The 

transpose of J is: 
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 (4.26) 

Substituting Equations (4.25) and (4.26) in Equation  (4.24) gives 
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 (4.27) 

Using MATLAB, we can find the torque for each joint of the robot arm. 

 

Figure (4.4): AL5B Robot Arm Torque Label 
 

In conclusion this chapter presented the importance of the Jacobian Matrix in the 
robotics manipulators, this matrix is s defined to represent the mapping of velocities 
from joint space to Cartesian space. The Jacobian of a manipulator is also used for 
mapping of forces and torques. When the force and moment at the end-effector are 
given and the set of joint torques is required. In addition, the Jacobian is very helpful in 
understanding the singular configuration of the manipulator. 
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CHAPTER 5 TRAJECTORY PLANNING  

The main problem of this chapter is to find a trajectory that connects an initial to a final 
configuration while satisfying other specified constraints at the endpoints (e.g., velocity 
and/or acceleration constraints). Without loss of generality, we will consider planning 
the trajectory for a single joint, since the trajectories for the remaining joints will be 
created independently and in exactly the same way. Thus, we will concern ourselves 
with the problem of determining q (t), where q (t) is a scalar joint variable [SPO 05]. 

We suppose that at time t0 the joint variable satisfies 

 0 0( )  q t q  (5.1) 

 0 0( )  q t v  (5.2) 

and we wish to attain the values at tf 

 (  )  f fq t q  (5.3) 

 (  )  f fq t v  (5.4) 

Figure (5.1) shows a suitable trajectory for this motion. In addition, we may wish to 
specify the constraints on initial and final accelerations. In this case, we have two 
additional equations 

 0 0( )  q t   (5.5) 

 (  )  f fq t   (5.6) 

The desired path is approximated by a class of polynomial functions. It generates a 
sequence of time-based “control set points” for the control of manipulator from the 
initial configuration to its destination. Figure (5.2) shows the trajectory planning block 
diagram. 

5.1 Cubic Polynomial Trajectories  

Suppose that we wish to generate a trajectory between two configurations, and that we 
wish to specify the start and end velocities for the trajectory. One way to generate a 
smooth curve such as that shown in Figure (5.1) is by a polynomial function of t. If we 
have four constraints to satisfy, such as (5.1)-(5.3), we require a polynomial with four 
independent coefficients that can be chosen to satisfy these constraints. Thus, we 
consider a cubic trajectory of the form 

 2 3
0 1 2 3( )          q t a a t a t a t For Distance     (5.7) 

Then, the desired velocity is given as 

 2
1 2 3( ) 2 3               q t a a t a t For Velocity    (5.8) 

 2 3( ) 2 6                        q t a a t For Acceleration   (5.9) 

Combining equations (5.7) and (5.8) with the four constraints yields four equations in 
four unknowns 

 2 3
0 0 1 0 2 0 3 0      q a a t a t a t     (5.10) 

 3 2
0 1 2 0 0    2   3v a a t a t    (5.11) 
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 2 3
0 1 2 3      f f f fq a a t a t a t     (5.12) 

 2
1 2 3    2   3f f fv a a t a t    (5.13) 

These four equations can be combined into a single matrix equation 

 

2 3
0 00 0 0

3
1 00 0

2 3
2

2
3

1

0 1 2 3

1

0 1 2 3
ff f f

ff f

a qt t t

a vt t

a qt t t

a vt t

     
     
     
     
     
     

 (5.14) 

For example Figure (5.3) shows cubic trajectory with q0 = 10, qf  = −20, t0=0, tf =1 and 
V0 = 0, Vf =0. The corresponding angle, velocity and acceleration curves are given in 
Figures (5.3). 

 

Figure (5.1): Typical Joint Space Trajectory 

 

 
 

Figure (5.2): Trajectory Planning Block Diagram 
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Figure (5.3): Cubic polynomial trajectory  

5.2 Quantic Polynomial Trajectories  

As can be seen in Figure (5.3), a cubic trajectory gives continuous positions and 
velocities at the start and finish points times but discontinuities in the acceleration. The 
derivative of acceleration is called the jerk. A discontinuity in acceleration leads to an 
impulsive jerk, which may excite vibration modes in the manipulator and reduce 
tracking accuracy. 

For this reason, one may wish to specify constraints on the acceleration as well 
as on the position and velocity. In this case, we have six constraints (one each for initial 
and final configurations, initial and final velocities, and initial and final accelerations). 
Therefore, we require a fifth order polynomial 

 

2 3 4 5
0 1 2 3 4 5

2 3 4
1 2 3 4 5

2 3
2 3 4 5

( )              

( ) 2 3 4 5                

( ) 2 6  12 20                    

q t a a t a t a t a t a t For Distance

q t a a t a t a t a t For Velocity

q t a a t a t a t For Acceleration

     

    

   





 (5.15) 

Using equations (5.1) - (5.6) and taking the appropriate number of derivatives, we 
obtain the following equations, 

 2 3 4 5
0 0 1 0 2 0 3 0 4 0 5 0         q a a t a t a t a t a t       (5.16) 

 2 3 4
0 1 2 0 3 0 4 0 5 0    2   3  4  5v a a t a t a t a t      (5.17) 

 2 3
0 2 3 0 4 0 5 0  2   6   12  20a a t a t a t      (5.18) 

 2 3 4 5
0 1 2 3 4 5         f f f f f fq a a t a t a t a t a t       (5.19) 

 2 3 4
1 2 3 4 5    2   3  4  5f f f f fv a a t a t a t a t      (5.20) 

 2 3
2 3 4 5  2   6   12  20f f f fa a t a t a t      (5.21) 

 

which can be written as 
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2 3 4 5
0 00 0 0 0 0

3 3 4
1 00 0 0 0

2 3
2 00 0 0

2 3 4 5
3

2 3 4
4

2 3
5

1

0 1 2 3 4 5

0 0 2 6 12 20

1

0 1 2 3 4 5

0 0 0 6 12 20

ff f f f f

ff f f f

ff f f
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a qt t t t t
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 (5.22) 

Figure (5.4) shows a quintic polynomial trajectory with q(0) = 0, q(2) = 40 with zero 
initial and final velocities and accelerations. 
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Figure (5.4): Quintic Polynomial Trajectory 

5.3 Linear Segments with Parabolic Blends (LSPB) 

Another way to generate suitable joint space trajectories is by so-called Linear 
Segments with Parabolic Blends or (LSPB) for short. This type of trajectory is 
appropriate when a constant velocity is desired along a portion of the path. The LSPB 
trajectory is such that the velocity is initially “ramped up” to its desired value and then 
“ramped down” when it approaches the goal position. To achieve this, we specify the 
desired trajectory in three parts. The first part from time t0 to time tb is a quadratic 
polynomial. This results in a linear “ramp” velocity. At time tb, called the blend time, 
the trajectory switches to a linear function. This corresponds to a constant velocity. 
Finally, at time tf − tb the trajectory switches once again, this time to a quadratic 
polynomial so that the velocity is linear. 
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Figure (5.5): Blend times for LSPB trajectory 

We choose the blend time tb so that the position curve is symmetric as shown in 
Figure (5.5) for convenience suppose that t0 = zero and  ( )  0  0q tf q   . Then 

between times 0 and tb we have 

 2
0 1 2( )q t a a t a t    (5.23) 

so that the velocity is 

 1 2( ) 2q t a a t   (5.24) 

The constraints 0(0)   q q  and  0   0 q   imply that 

 0 0 a q  (5.25) 

 1  0a   (5.26) 

At time tb we want the velocity to equal a given constant, say V. Thus, we have 
 2( )  2   b bq t a t V   (5.27) 

This implies that 

 2  
2 b

V
a

t
  (5.28) 

Therefore, the required trajectory between 0 and tb with 
b

V

t
   is given as 

 2 2
0 0( )      

2 2b

V
q t q t q t

t


     (5.29) 

 ( )    
b

V
q t t t

t
   (5.30) 

   
b

V
q

t
   (5.31) 

Where  denotes the acceleration. 
Now, between time tf and tf - tb, the trajectory is a linear segment (corresponding to a 
constant velocity V) 
 0 1 0( )        q t a a t a Vt     (5.32) 

Since, by symmetry, 

 0  
( )

2 2
f ft q q

q


  (5.33) 
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We have 

 0
0

  

2 2
f fq q t

a V


   (5.34) 

which yields 

 0
0

  -   
  

2
f fq q V t

a


  (5.35) 

Since the two segments must “blend” at time tb we require 

 0
0

   -   
 

2 2
f f

b b

q q V tV
q t Vt


    (5.36) 

which gives upon solving for the blend time tb 

  

 0 -     
 f f

b

q q V t
t

V


  (5.37) 

Note that we have the constraint 0     
2
f

b

t
t  . This leads to the inequality 

 0 02( )f f
f

q q q q
t

V V

 
   (5.38) 

the inequality can be written in another way 

 0 02( )f f

f f

q q q q
V

t t

 
   (5.39) 

Thus, the specified velocity must be between these limits or the motion is not possible. 
The portion of the trajectory between tf-tb and tf is now found by symmetry 
considerations. The complete LSPB trajectory is given by 

 

2
0

0

2
2

                                  0
2

( )                    -
2

            -
2 2

b

f f
b f b

f
f f f b f

a
q t t t

q q Vt
q t Vt t t t t

at a
q at t t t t t t

   


    



    


 (5.40) 

Figure (5.6) shows such an LSPB trajectory q0= zero, qf = 40, and t0 =0, tf =1, where the 

maximum velocity V = 60. In this case
1

3bt  . The velocity and acceleration curves are 

given in the same Figure. 
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Figure (5.6): Trajectory using LSPB 
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CHAPTER 6 ROBOT HARDWARE AND SOFTWARE 

To achieve a control of a robot arm by using personal computer, we must make the 
connection between the robot and PC. This connection is called interface connection 
and it is done by using a microcontroller. Microcontrollers are inexpensive devices 
commonly used in embedded computing applications to impart computing and smart 
decision-making capabilities to machines, products, and processes. Microcontrollers are 
designed to interface to and interact with electrical/electronic devices, sensors and 
actuators, and high-tech gadgets to automate systems. Microcontrollers are generally 
embedded directly into the product or process for automated decision-making. They are 
not meant to interface with human beings; however, microcontrollers do not have 
graphical user interface (GUI) capabilities that are common in many personal computer 
(PC) applications. The complete control process can be divided into two categories, 
hardware and software. Now we will discuss individually each one of these categories. 

6.1 Hardware Environment 

The hardware environment for this thesis consists of a CUBLOC microcontroller, a PC, 
and a data link between the PC and AL5B robot arm. The microcontroller is a device 
that interfaces to sensors and robot actuators and performs embedded computing. The 
PC is used to control the robot by GUI; it is used to write the user defined embedded 
program which is to be run on the microcontroller. Also serves as a debugging 
environment when prototyping microcontroller based products and processes. It allows 
the user to receive sensory information and other selected data. A data link is needed for 
the microcontroller and PC to communicate. In this thesis, we use a serial 
communication link(wire) between the microcontroller and PC. Figure (6.1) shows the 
hardware environment used in this thesis. A robot arm with CUBLOC Kit is shown 
connected to a PC through a DB-9 serial cable. 

 

Figure (6.1): Hardware environment 

6.1.2. CUBLOC Microcontroller 

The CUBLOC “CB280” with 64-pin is manufactured by Comfile Technology where 49 
of its pins can be used for I/O operations. It can be powered with 6-12DC volt, where 
regulators on its Kit supply it with a steady 5VDC. The CB280 comes with 80KB 
Program Memory (Flash), 4KB Electronically Erasable Programmable ROM 
(EEPROM), and a small amount of 2K RAM. The microprocessor used in CB280 is 
Atmega128 that runs at 18.432 MHz with Program Speed of 36,000/sec. The CUBLOC 
is programmed with CublocStudio in BASIC and/or Ladder Logic Language; the 
instruction set is permanently stored on the CUBLOC ROM. The user-defined program 
is downloaded into the EEPROM from a PC through a DB-9 serial cable connection 
between the PC and CB280 Kit. CB280 have eight Channels for Analog Inputs 10-bit 
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ADCs, 6 Channel Analog Outputs 16-bit PWMs (DACs), 2 Channel 16-bit High Speed 
Counters, 2 High-speed hardware-independent serial ports and 4 Channels External 
Interrupts. Each pin can source (supply) a maximum current of 40mA. See [COM 05] 
for more details on CUBLOC hardware features. 

 

Figure (6.2): CB280 Chip and CUBOC Kit 

6.1.3. Personal Computer 

As previously mentioned, the PC is used to write Basic programs that the CUBLOC 
executes and to display sensory data processed by the CUBLOC and control the robot 
using MATLAB GUI. Any PC that supports MATLAB can be used. In this thesis, a 
Pentium class PC running MATLAB 7.5 under Windows vista is used. 

6.1.4. Interface Kit 

The AL5B consists of a group of 6 RC servo motors. An electronics interfacing circuit 
(Figure (6.3)) is designed to connect the servo motor group to the CUBLOC 
microcontroller. This interfacing circuit consists of input and output ports; those can be 
easily connected to the CUBLOC and the servo motor group. Moreover, designed 
circuit has 6 PWM channels, 8 ADC channels and other I/O pins. 

 

Figure (6.3): Interface kit 

Referring to the RC servo motor shown in Figure (6.4), there are three wires to 
the RC servo motor. The black wire is ground and red wire is for power. The third wire 
“yellow” for inputting PWM signal. We can use the PWM to easily implement an RC 
Servo motor into AL5B robot.  

The RC servo motor will move to a location set by pulse and duty value and will 
hold its position. By being able to control the exact angles at which the RC servo stops, 
we can control the RC servo as freely as we want. In this case, of control the RC servo 
motor has internal feedback. Because we want to measure the angle of all joint in the 
arm we modified the servo motor by cutting the internal signal feedback and connect it 
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to the ADC input from interface kit to achieve the closed loop control by send these 
angles to the computer by CB280 microcontroller.  

 

Figure (6.4): RC Servo Motor 

6.1.5. DB-9 Serial Cable 

The CUBLOC and PC communicate through a serial communication link. A variety of 
serial communication links are currently in use. The CUBLOC uses the RS-232 serial 
communication. The serial cable, which is used in this thesis, is called the DB-9 serial 
cable. The cable links a serial, or COM, port on the PC to the CB280 Kit. This allows 
the user to download a program into the CUBLOC. In addition, this serial connection 
enables data communication between the CUBLOC and the PC. The pinout schematic 
for a DB-9 serial cable is shown in Figure (6.5). 

 

Figure (6.5): Schematic for a DB-9 Serial Cable 

Each of the pins performs a specific task to which it is assigned. The assignment 
for each pin is shown in Table (6.1). 

Table (6.1): Pin assignments for a DB-9 serial cable 
Pin # Label Signal Name Signal Type 

1 CD Carrier detect Control 

2 RD Received data Data 

3 TD Transmitted data Data 

4 DTR Data terminal ready Control 

5 GND Signal ground Ground 

6 DSR Data set ready Control 

7 RTS Request to send Control 

8 CTS Clear to send Control 

9 RI Ring indicator Control 

6.2 Software Environment 

Software environment can be divided into two parts: the CUBLOC microcontroller 
program and MATLAB Program. In CUBLOC program, we write a code to make the 
interfacing between PC and AL5B arm. The MATLAB program consists of the Serial 
Communication code and the graphical user interface (GUI). In this section, we explain 
the complete system functions, CUBLOC program and MATLAB program. 

6.2.1. Overall System 

The complete system functions is shown in Figure (6.6) it consists of four parts, forward 
kinematics, inverse kinematic, trajectory planning and a controller.  
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Figure (6.6):  Complete System Functions 

The forward kinematics (FK) consists of finding the position and orientation of 
the end-effector in the space knowing the movements of its joints and after calculating 
the FK we can compute the Jacobian and arm singularity. The FK flowchart is shown in 
Figure (6.7). The inverse kinematics (IK) consists of the determination of the joint 
variables corresponding to a given end-effector position and orientation. The IK 
flowchart is shown in Figure (6.7). 

The path is defined as a sequence of robot configurations in particular order with 
no regard to the timing of these configurations. Trajectory is concerned with the 
specific time for each part of the path. Each joint velocity at the specified joint positions 
needs to be found. This is accomplished using the Jacobian. Figure (6.8) shows 
Trajectory Planning Flowchart. The last part is the controller of the robot arm by GUI 
program. Next, we describe various elements of the software environment used in this 
thesis. 

6.2.2. CUBLOC Program 

The CB280 is programmed using the CublocStudio in basic programming language. It 
is a BASIC-like language developed by Parallax, Inc. In addition to simple arithmetic, 
the CB280 executes certain task specific commands. See [COM 05] for more details on 
the CUBLOC CB280 programming language. 
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Figure (6.7): Forward and Inverse Kinematic Flowchart 
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Figure (6.8): Trajectory Planning Flowchart 

6.2.3. Serial Communication 

The serial communication is a low-level protocol used for data communication between 
two or more devices. Serial communication uses a data port to send/receive data in a 
serial manner, i.e., one bit at a time. Programming two or more devices to communicate 
serially requires that the devices operate at the same communication rates. Configure 
serial port communications  
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Here is an example serial session connecting MATLAB to the serial port 
(COM1) with a baud rate of 4800: 

    s = serial ('COM1'); 
    set(s,'BaudRate', 4800); 
    fopen(s); 
    fprintf(s,'*IDN?') 
    out = fscanf(s); 
    fclose(s) 
    delete(s) 
    clear s 

The “*IDN?” Command above is a typical instrument command and can be replaced by 
any command that is valid for your specific device. *IDN queries the device for 
identification information, which is returned to out. If your device does not support this 
command, or if it is connected to a different serial port, you should modify the above 
example accordingly. 

 Graphical User Interface 

The GUI for the AL5B robotic arm control was written in MATLAB program; 
MATLAB is a powerful software package that allows for plotting data in multiple 
dimensions and it easy to work with three dimensions. The program consists of six 
different windows of the arm control. 

The main screen of the GUI program, shown in Figure (6.9), consists of five-tab 
window, Forward Kinematic, Inverse Kinematic, Trajectory Planning, Jacobian and 
controller. Now we will explain the entire screen in detail in the following explanation: 

 

Figure (6.9): GUI Main Window 
1- Forward and inverse kinematic window 

There are two parts of this window; the first is the forward kinematics and the second is 
the inverse kinematics. This window is shown in Figure (6.10).The main function of the 
first part is to allow the user to compute the position of the end effector by entering the 
angles in the edit boxes or by moving the angle slider. There are two methods to move 
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the robot arm by using off line button or by execute button. After entering all angles, the 
transformation matrices are displayed in the FK window. The robot arm simulation is 
shown in the right of the window; this allows the user to see the robot 3D motion. 
Another function of this window is displaying the DH table, this table allows the user to 
edit the DH parameters and plot it as shown in Figure (6.11). 

 

Figure (6.10): Forward and Inverse Kinematic Window 
 
 

 

Figure (6.11): Robot Arm Frame Coordinate 

In the same window, there are two main buttons to control the robot by joystick mode or 
manual mode. If we select manual mode, we can use the mouse or keyboard to edit the 
angles, and we can select the joystick mode to move the robot. 

The Second part of this window called inverse kinematic. The main function of 
the inverse kinematic is finding the joint variables in terms of the end-effector position 
and orientation. This function allows the user to compute the joint variables of the arm 
by entering the position (x, y, z, and WARTG) of the end effector in the edit boxes or 
by moving the angle slider. 

After entering the position and the WARTG angle, the user must select the type 
of solution by selecting Elbow UP or Elbow down and by pressing the same button in 
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forward kinematic. We can show the arm simulation and all transformation matrix of 
the arm. If the user enters wrong angle or position, a dialog message appears as shown 
in Figure (6.12). 

 

Figure (6.12): Error Dialog message 
2- Trajectory Planning Window 

The manipulator shall move in the workspace along the pre-specified desired paths to 
accomplish the desired action. A trajectory is a path with all necessary timing 
specifications to calculate the required position, and velocity of the robot configuration. 
In Trajectory Planning Window as shown in Figure (6.13), the user must enter the initial 
and final position, WARTG and time, and then the user can choose the type of 
polynomial as cubic, quintic or LSPB trajectory, then select the type of solution Elbow 
down or up then the robot arm can move with this trajectory. Another function of this 
window is to record the path of robot motion or multi-path by pressing record button 
and by pressing execute button we can repeat the robot arm motion.  

 

Figure (6.13): Trajectory Planning Window 
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3- Jacobian Window 

The Jacobian is one of the most important quantities in the analysis and control of robot 
motion. The Jacobian can also be used to indicate possible configurations at which 
singularities are present. Figure (6.14), shows the Jacobian matrix computed by the 
program while moving the arm. Moreover, another function of this window is to display 
a message appears stating the existence of the singularity of the arm if it occurs during 
the work. This window can also be used to compute the relationship between static 
force and torque by entering the force at all joint. The last function of this window is to 
compute the relationship between the end-effector velocity and the joints velocity by 
using the pseudo inverse Jacobian. The user enters the end-effector velocity in cm/s and 
the program can get the result in rad/s. 

 

Figure (6.14): Jacobian Window 
4- Controller Window 

Controller is very important for control of the robot. In this window, the user can choose 
the type of controller he wants to apply for the robot. In future work, we can use 
Simulink for classical controller or advance controller, like P, PD, PID, Fuzzy, Optimal, 
Neural Network, Sliding Mode, H-infinity, Backstepping control, etc. 

After the selection of the controller type, the robot will move under this 
controller and the step response can be shown. 

6.3 System Limitations 

Figure (6.15) illustrates the joints and their directions of rotation. The arrows show 
where the joint angle is zero and the plus and minus signs indicate whether the angle is 
positive or negative in that direction of rotation. Joint zero rotates the robot relative to 
the base and Joint 5 is the roll of the wrist.  
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Figure (6.15): Robot Arm Joints 

Table 3 lists the Joint limits of the AL5B robot arm in raw values (the servo control 
input values are integers [0,…., 254]) and the correspondent values in degrees.  

Table (6.2): Robot Arm Joint Limits 
Joint Joint limits [Duty-time] Joint limits [Deg] 

1 0.650742 < 1 < 2.465258 -90 ≤ 1≤ +90 
2 0.765 < 2 < 2.453825 0 ≤ 2≤ +180 
3 2.31583 < 3< 0.68461 -90 ≤ 3≤ +90 
4 0.634138 < 4< 2.437746 -90 ≤ 4≤ +90 
5 2.34222 < 5 < 0.67778 -80 ≤ 5≤ +80 

gripper 1.726323 ≤ 6 ≤0.159678 0 ≤ 6 ≤ +60 
 
 
 
 



Chapter 7: Results and Discussion  
 

 55

CHAPTER 7 RESULTS AND DISCUSSIONS 

This chapter presents simulations and results. Mathematical modeling and kinematic 
analysis of a low cost AL5B Robot arm, was carried out in this study. Robot arm was 
mathematically modeled with Denavit Hartenberg (D-H) method. Forward Kinematics, 
Inverse Kinematics, Velocity Kinematic “Jacobian”, and Trajectory Planning solutions 
are generated and implemented by the developed software. An analysis technique was 
introduced to reduce the multiple solutions in inverse kinematics part. The developed 
software included a simulator part to test the motional kinematics and to show the 
relevant motion in 3D. A typical example, calculated with the generated software, was 
included here for the user.  

7.1 Experimental Results 

In this section, the experimental results of simulation and interfacing are introduced 
with brief comparison between the simulation results and the physical arm results.   

7.1.1. Forward Kinematics 

An initial position angle is given in Figure (7.1) with zero θ (0) 0  , 0,1,....,5i i   . The 
total transformation matrix of this position is shown in equation (7.1). This matrix gives 
the initial position and orientation of the robot arm.  

 

Figure (7.1): Initial Position Angle 
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    (7.1) 

From equation (7.1), we find that the (x, y, and z) position of the end-effector is equal to 
(347, 0, and 70). Figure (7.2) shows the 3D graphics of AL5B in this position. 
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Figure (7.2): AL5B 3D Graphics Initial Position 

When θ values are changed from zero to given values as shown in Figure (7.3).The total 
transformation matrix, 0

5T  between the base of the robot arm and the end effectors is 

shown in equation (7.2). 

 

Figure (7.3): Final Position Angle 
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 (7.2) 

From equation (7.2), we can find the position of the end-effector equal [x, y, and z] = 
[211, 211, and 205]. Figure (7.4) shows the 3D graphics of AL5B in this position. 
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Figure (7.4): AL5B 3D Graphics Final Position 
0

5T  is determined by the developed software and it is the final forward kinematics 

solution of the robot arm. 0
5T  Matrix values are checked against the physical positions 

of the robot arm in Table 7.1. 

Table (7.1): Differences Between Calculated And Physical Values Of AL5B Robot 
Arm 

Position Values 0
5T Values (mm) 

Measured Values 
(mm) Percentage Error 

X 211 208.85  1% 
Y 211 209.15  1% 
z 205 194  5% 

When calculating xyz coordinates of the target, position compared with the measured 
coordinates as in Table 7.1, it is observed that the values were very close to each other. 
However, there are some errors in (x, y and z) direction, but the error in z direction is 
larger than the error in x or y direction. This error is a result of the weight of the arm 
and the contents of the servo motor, so dynamic modeling should be applied to 
eliminate this error.  

7.1.2. Inverse Kinematics 

On the other hand, inverse kinematics equations will be used to determine the target 
position and its orientation for the robot arm. The developed software will calculate the 
required angles for target orientation and target positioning. 

An initial position is given in Figure (7.5) with x = 347, y = zero, z =70 and 
WARTG = zero values. The total transformation matrix of this position is shown in 
equation (7.1). This matrix gives the initial position and orientation of the robot arm. 
Figure (7.2), shows the 3D graphics of AL5B in this position. 

When x, y, z and WARTG values are changed from initial position to given 
values in Figure (7.6) and select the solution type as Elbow Up .The total transformation 
matrix, 0

5T  between the base of the robot arm and the end effectors is shown in equation 

(7.3). 
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Figure (7.5): X, Y, Z and WARTG Initial position  

 

Figure (7.6): X, Y, Z and WARTG Final position  
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 (7.3) 

From forward kinematic editor we can find the angles of the end-effector [1, 2, 3, 4 
and 5] equal [53, 79, -73, -6 and 0]. Figure (7.7), shows the 3D graphics of AL5B in 
this position with Elbow Up solution. 
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Figure (7.7): AL5B 3D Graphics Final Position with Elbow Up Solution 

If we select the solution type as Elbow Down. The total transformation matrix, 0
5T  

between the base of the robot arm and the end effectors is shown in equation (7.3). 
From forward kinematic editor we can find the angle of the end-effector equal [1, 2, 3, 
4 and 5] = [53, 3, 73, -76 and 0]. Figure (7.8) shows the 3D graphics of AL5B in this 
position with Elbow Down solution. 

 

Figure (7.8): AL5B 3D Graphics Final Position with Elbow Down Solution 

The desired values are checked against the physical positions of the robot arm in 
Table 7.2. When desired values xyz coordinates of the target position are compared with 
the measured coordinates as in Table 7.2, it is observed that the values were very close 
to each other. 

Table (7.2): Differences Between Desired and Real Values Of AL5B Robot Arm 
Positions 

Position Values Desired Values (mm) Measured Values (mm) Percentage Error 
X 150 148  1% 
Y 200 198  1% 
Z 200 192  4% 

However, there are some errors in (x, y and z) direction. From table 7.1 and 7.2, we can 
see the error in x and y direction is less than the error in z direction. This error is normal 
and we can eliminate this error by applying any controller low like PID, but in z 
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direction the error is large and we can eliminate this error by analyzing the dynamic 
modeling for AL5B robot arm.  

7.1.3. Trajectory Planning 

Straight-line motions are most common in the industrial applications; however, 
movement on a line is mostly obtained by specifying the discrete time joint-
displacements at a constant time rate. The velocity and acceleration of the points can be 
calculated from the numerical approximation of the time derivatives. Several methods 
were used to compress the describing data of the trajectories as cubic, quintic and LSPB 
trajectory. 

Cubic Trajectory 

Cubic polynomial or third order polynomial approximation describes the path 
parametrically as a function of time with the position and velocity constraints at initial 
time t = zero and final time tf. Third order polynomials provide continuity of 
displacements and velocities, but may result in discontinuity of accelerations, thus 
abrupt changes in joint torques. Higher order polynomials are required to guarantee the 
smoothness of the joint accelerations. 

An initial and final position is given in trajectory editor as shown in Figure (7.9) 
with x = 347, y = zero, z =70 and WARTG = zero values and final position with x = 200, 
y = 200, z =200 and WARTG = zero values. As shown in the same figure we choose the 
solution type as Elbow Up. 

 

Figure (7.9): Trajectory Editor 

After selecting cubic trajectory button, the robot arm will be moved to the final position 
and when that happens we see the cubic trajectory curve as shown in Figure (7.10). This 
figure is divided into three parts shows the relation between the angle, velocity and 
acceleration with time. 
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Figure (7.10): Cubic Polynomial Trajectory 

Quintic Trajectory 

An initial and final position is given in trajectory editor as shown in Figure (7.9) with x 
= 347, y = zero, z =70 and WARTG = zero values and final position with x = 200, y = 
200, z =200 and WARTG = zero values. As shown in the same figure we choose the 
solution type as Elbow Up. 

After selecting quintic trajectory button, the robot arm will be moved to the final 
position and when that happens we see the quintic trajectory curve as shown in Figure 
(7.11). This figure is divided into three parts are shows the relation between the angle, 
velocity and acceleration with time. 

Parabolic blend with linear segments  

This type of trajectory is appropriate when a constant velocity is desired along a portion 
of the path. The LSPB trajectory is such that the velocity is initially “ramped up” to its 
desired value and then “ramped down” when it approaches the goal position. 

An initial and final position is given in trajectory editor as shown in Figure (7.12) with x 
= 347, y = zero, z =70 and WARTG = zero values and final position with x = 200, y 
=200, z =200 and WARTG = zero values. The LSPB needs to enter the initial and final 
velocity for all angles, but in MATLAB program the LSPB function compute the 
velocity for all angles by using equation (5.39). As shown in the same figure, we choose 
the solution type as Elbow Up. 
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Figure (7.11): Quintic Polynomial Trajectory 

 

Figure (7.12): LSPB Trajectory Editor  

After selecting LSPB trajectory button, the robot arm will be moved to the final 
position and when that happens we see the LSPB trajectory curve as shown in Figure 
(7.13). This figure is divided into three parts and shows the relation between the angle, 
velocity and acceleration with time. 
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Figure (7.13): LSPB Polynomial Trajectory 

7.1.4. Velocity Kinematic 

Jacobian Matrix 

Example 1: 

When the robot arm is moving the developed software will calculate the Jacobian 
matrix for target orientation and target positioning. An initial position is given in Figure 
(7.5) with x = 347, y = zero, z =70 and WARTG = zero values. The Jacobian matrix of 
this position is shown in Figure (7.14). 

 

Figure (7.14): Example 1 Jacobian Matrix  

From the Jacobian matrix in Figure (7.14), the developed software compute the arm 
singularity. In this position the robot well be in singular mode, and the message shown 
in Figure (7.15) will show that.  

 

Figure (7.15): Example 1 Singular Mode  
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Example 2 

When position values are changed from home position to another position as shown in 
Figure (7.6). The developed software will calculate the Jacobian matrix for the target 
orientation and target position. The Jacobian matrix of this position is shown in Figure 
(7.16). 

 

Figure (7.16): Example 2 Jacobian Matrix 

From the Jacobian matrix in Figure (7.16), the developed software compute the arm 
singularity. In this position the robot is in non-singular mode, and the message shown in 
Figure (7.17) will show that.  

 

Figure (7.17):  Example 2 Singular Mode 

Torque and Force 

The developed software computes the relationship between static force and torque by 
entering the force at end-effector and compute the torque. 

Example 3 

An initial force (N) is given in Figure (7.18) with zero values. The torque results is 
shown in the same figure equal zero (N.m).  

 

Figure (7.18): Example 3 Torque - Force Relationship 

Example 4 

When force values are changed from zero value to another value as shown in Figure 
(7.19). The developed software will calculate the torque as shown in Figure (7.19). 
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Figure (7.19): Example 4 Torque - Force Relationship 

End-effector and Joints Velocity 

We can compute the relationship between the end-effector velocity (cm/s) and the joints 
velocity (rad/s) by using developed software. 

Example 5 

An initial end-effector velocity (cm/s) is given in Figure (7.20) with zero values. The 
joints velocity results have shown in the same figure equal zero (rad/s). 

 

Figure (7.20): Example 5 End-effector and Joints Velocity 

Example 6 

When the end-effector velocity values are changed from zero value to another value, the 
developed software will calculate joints velocity as shown in Figure (7.21). 

 

Figure (7.21): Example 6 End-effector and Joints Velocity 

Denavit-Hartenberg 

The developed software allows user to change the DH parameters shown in Figure 
(7.22) and plot the robot link.  
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Example 7 

An initial parameter is given in Figure (7.22) with  = [0,90,0,0,-90], a = 
[0,0,120,127,0], d =[70,0,0,0,100] values. Figure (7.23) shows the Robot Arm Frame 
Coordinate. 

 

Figure (7.22): DH Initial Parameter 
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Figure (7.23): Example 7 Robot Arm Frame Coordinate 

Example 8 

When the DH parameter values are changed from initial value to with  = [0,0,0,0,0], a 
= [0,0,100,127,0], d =[70,0,0,0,100] and link radius = 1.5 as shown in Figure (7.24). 
The developed software plots the Robot Arm Frame Coordinate as shown in Figure 
(7.25). If the user enters wrong DH parameters then the 3D model of the robot arm will 
be as shown in Figure (7.26). We note that false DH parameters break down the arm. 

 

Figure (7.24): Example 8 DH Parameter 
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Figure (7.25): Example 8 Robot Arm Frame Coordinate 
 

 

Figure (7.26): Example 8 Robot Arm 3D Graphical 

Pick and Place 

One of the main applications used in industrial robot is to move things from one place 
to another. 

Example 9 

We want to move four blocks from initial position to another position, the initial 
positions for the blocks are = [280 0 45; 280 0 30; 280 0 15; 280 0 0; 347 0 70] and the 
Final Positions equal [0 280 0; 0 280 15; 0 280 30; 0 280 45]. The developed software 
make this job as shown in Figure (7.27). 
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Figure (7.27): Move Blocks from Initial Position to Final Position 
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CHAPTER 8 CONCLUSION AND 
RECOMMENDATIONS 

This report presented the development of educational software package using 
MATLAB/Simulink and 3D model. AL5B robot arm was modeled in this research. The 
complete software life cycle was implemented and validated. A complete mathematical 
model of AL5B robot is developed including complete Kinematics analyses of the 
AL5B robot arm. Forward and inverse kinematics equations were derived using 
Denavit-Hartenberg notation. Velocity Kinematic “Jacobian”, and Trajectory Planning 
solutions were generated and implemented by the developed software. Simulation 
studies were performed by using MATLAB software’s. By using 3D graphics program, 
structure for the AL5B robot was built which enable the researchers to investigate robot 
parameters using both forward and inverse kinematics and in turn, this was facilitated 
the process of designing, constructing and inspecting on the robots in the real world.  

The Graphical User Interface (GUI) of the software package was developed for testing 
motional characteristics of the Robot arm. A physical interface between the AL5B robot 
arm and the GUI was designed and built. A comparison between kinematics solutions of 
the virtual arm and the robot's arm physical motional behaviors were been accomplished. 
The results are displayed in a graphical format and the motion of all joints and end 
effector can be observed. 

The developed system was identified as an educational experimental tool; it can be used 
in graduate and undergraduate robotic courses to realize the relationships between 
theoretical and practical aspects of robot manipulator motions in real time. Some of 
these applications are: 

 Forward Kinematics. 

 Inverse Kinematics. 

 Velocity Kinematic 

 Trajectory Planning and Path Planning 

 Reedy to Apply Controller Low 

Since MATLAB is slow in the execution time, we recommend using a high-level 
computer programming language to perform the software part. 

A future work can be focused on different topics, like the development of 
different types of controllers be applied on the developed platform then selecting the 
best control strategy for this type of manipulators. This is to improve the obtained 
results and to minimize the error between the real arm and the simulated one.  

Many future developments can be carried on this robot arm like other types for 
robots, these developments include path-planning, dynamics modeling, force control 
and computer vision. 
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APPENDIX A: ROBOT DESCRIPTION AND 
SPECIFICATION 

A.1. AL5B Arm Configuration 
The AL5B Arm service represents the physical robotic arm as a list of joints, 
implementing the contract defined in Articulated Arm State. The five joints of the arm 
are defined in a serial order from the base to the wrist rotate. Each joint has only one 
degree of “twist” angular freedom and a range from -90 degrees to 90 degrees about the 
joint axis. The joint axis and joint normal are designated using coordinate system. The 
dimension and details about AL5B robot arm are shown in Table (8.1). Figure (8.1) 
shown the AL5B robot arm dimensions  

Table (A.1) AL5B Robot Arm Dimension 
AL5B  Robot Arm  Dimension in (mm) 

Base Diameter 100,hight 50 
Shoulder Diameter 100,hight 30 
Upper Arm Length 127, Thickness 53 
Forearm Length 120, Thickness 43 
Wrist Length 70, Thickness 53 
Flange Length 7, wide 15,height 30 
Gripper Length 51, Gripper Opening 50 

 

 
Figure (A.1) AL5B Robot Arm Dimension 

A.2. Mechanical System  
The mechanical system consists of all non-electrical components of the robotic arm.  
The system used to reproduce or simulate the mechanics of a human arm.  The basic 
“bone” structure  designed and constructed of some type of metal or plastic, and like the 
human arm, critical joints will connect these “bones”. These joints designed to provide 
both stability and the proper range of motion. A variety of motors used to actuate the 
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assembly at these joints. The mechanical system shown in Figure (8.2) divided into the 
following components. 

 
Figure (A.2) Mechanical System 

 Arm Mount 

The first step is to design a base for the arm to be mounted to; the mount will be 
attached to a solid base that will sit on the ground or a table.  The mount must be long 
enough to provide the desired range of arm motion without making the system unstable.  
The arm mount and base will house the Robotic Actuator Controller (RAC). 

 
Figure (A.3) Arm Mount 

 Shoulder 

After the base is designed, a shoulder joint will be designed.  The shoulder must provide 
three functions.  It must anchor the rest of the arm to the arm mount, provide the desired 
range of arm motion, and provide a connector for the upper arm.  The shoulder will also 
house the electromechanical assembly used for the upper arm actuation. 

 
Figure (A.4) Shoulder 

 Upper Arm and Forearm 

The upper arm must connect to the shoulder connector and provide a “Forearm” joint 
for which the lower arm will be connected.  The upper arm needs to be stable and long 
enough to support the range of arm motion.  The Forearm must provide a connector for 
the lower arm as well as holding the electromechanical assembly used for the actuation 
of the lower arm. 
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Figure (A.5) Upper Arm and Forearm 

 Wrist and gripper 

The Wrist arm must connect to the Forearm connector and provide a “wrist” joint for 
the hand to attach to. The Wrist arm must be stable and needs to be long enough to 
support the arm’s desired range of motion.  The wrist must provide a connector for the 
hand and house the electromechanical assembly for the actuation of the gripper. 

 
Figure (A.6) Wrist and gripper 

A.3. Drawing Description 
The first step in this process is to design the arm in AutoCAD 3D program. The 
program chosen for this was Autodesk Inventor. Inventor allows the arm to be designed 
and visualized at the same time. It also allows the arm to be checked for possible 
collisions and link interference. Because each link depends upon the previous link, the 
design of the arm needs to begin at the base and finish at the end effector or gripper. 
Trunk or base is therefore the first to be designed, followed by shoulder, and so on. This 
means that the design process is fairly involved, as each link has to be redesigned 
several times. Now we will show links and joint of our AL5B as follow: 

 Trunk  

 

Figure (A.7) Trunk 
 Shoulder 
 

 

Figure (A.8) Shoulder  
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 Upper Arm 

 

Figure (A.9) Upper Arm 
 Forearm 

 

Figure (A.10) Forearm 
 Wrist 

 

Figure (A.11) Wrist 
 Flange 

 

Figure (A.12) Flange 
 Gripper 

 

Figure (A.13) Gripper 
A.4. Electrical System 
The electrical system will consist of all the electrical and computer components of the 
project.  The system will be used to respond to the input stimuli and control the 
actuation of the robotic arm.  The electrical system can be divided into the components 
discussed below. 
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 RC Servo Motor 

The arm uses HS-475HB servo motor in the base, HS-755HB in the shoulder, HS-
645MG in the elbow, HS-475HB in the wrist, and HS-422 in the gripper. The wrist 
rotate uses HS-85BB.  

 CUBLOC Microcontroller 

As shows in Figure (1), the main board has one positive power inputs, in the middle 
there is a C8280.The main voltage is between 6 V to 12 V. Then we used a voltage 
regulator to stable at 5 V. Rest switch used to restart the board, com port used to 
connect the kit with the PC, the I/O port used to connect the main board with the 
interface kit shown in Figure(2). 

 
Figure (A.14)  MAIN BOARD CUBLOC  

Figure (2) shown the interface kit, it consists may port like, ADC port used to read the 
analogue value of the angle, PWM port used to send the control signal to servo motor, 

 

 
Figure (A.15) Interface Kit 
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The contact pin of Servo motor has 6 lines, each line owns 3 pins. See the above Figure 
in blue words; the pins in the most lateral connect to GND. Power shows in the middle. 
The signal pin lays in the most inner connect to the yellow wires of servo motor. The 
I/O port connecting with the main board this used to received and send data between the 
main board and interface board. 

 Wiring Harness 

The wiring harness will connect all of the servo motor to the interface kit.  It will be 
designed so that it can plug in directly to the connectors on the interface kit.  

 Serial Cable 

The CUBLOC and PC communicate through a serial communication link. A variety of 
serial communication links are currently in use. The CUBLOC uses the RS-232 serial 
communication. The serial cable, which is used in this thesis, is called the DB-9 serial 
cable. The cable links a serial, or COM, port on the PC to the CB280 Kit. This allows 
the user to download a program into the CUBLOC. In addition, this serial connection 
enables data communication between the CUBLOC and the PC.  

A.5. Schematic Diagram 
 CB280 Kit 

 

Figure (A.16) CB280 Kit Schematic Diagram 
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 Interface kit 

 

Figure (A.17) CB280 Interface Kit 
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APPENDIX B: ECONOMIC COST AND MATLAB 
FUNCTION 

Economic Cost 

Economic cost of the project can be separated in two groups. First of them is software 
cost. Another one is hardware cost. Table (B.1) shows software cost and hardware cost. 

Table (B.1) Software Cost And Hardware Cost. 

Hardware Price ($) Software Price ($) 

AL5B Robot Arm 1000$ Windows Operating System 100 

CB280 Microcontroller 150 MATLAB 7.1 or higher 150 

Microcontroller interface Kit 100 CublocStudio free 

Computer  500 AL5B Robot Arm Software free 

Total  1750  250 

 
MATLAB function description 
 

MATLAB File Description 
LynxRobot001.m Main MATLAB file 
LynxRobot001.fig Main GUI file 

AllLinks.mat 3D Drawing Link 
forkin.m Forward Kinematic Function 
invkin.m Inverse Kinematic Function 
cubic.m Cubic Trajectory Polynomial Function 

quintic.m Quintic Trajectory Polynomial Function 
LSPB.m (Linear Segment Parabolic Blend) trajectory 

LynxJacman.m AL5B Jacobian Function 
build_block.m Pick and Place Function  
staticForce.m Relation Between Torque and Force Function 

DH_axis.m 
Homogeneous Transform that Describes the 

End-Effector Frame  
plotframe.m Plot Coordinate Frame 

tmat.m Homogeneous Transformation Function 
rotx.m Rotation about x Function 
roty.m Rotation about y Function 
rotz.m Rotation about z Function 

 

 

 


