

Islamic University of Gaza
Deanery of Graduate Studies

Faculty of Engineering
Electrical Engineering Department

Master Thesis

Simulation and Interfacing of 5 DOF Educational
Robot Arm

Mohammed Reyad AbuQassem

Advisors
Dr. Hatem Elaydi

Dr. Iyad Abuhadrous

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master
of Science in Electrical Engineering

June 2010
ھـ1431 جمادي الثاني

 ii

)ناقشةالم لجنة قبل من الحكم نتيجة (البحث على الحكم نتيجة صفحة

 iii

ABSTRACT

Many universities and institutes experience difficulty in training people to work with
expensive equipments. A common problem faced by educational institutions concerns
the limited availability of expensive robotics equipments, with which students in the
academic programs can work, in order to acquire valuable "hands on" experience.
Therefore, the Robot Simulation Software (RSS) nowadays is paramount important.
Moreover, hands on experience with programmable robots gives student great
understanding.

This work reports the development of a visual software package where an AL5B
Robot arm has been taken as a case study. It adopts the virtual reality interface design
methodology and utilizes MATLAB/Simulink and AutoCAD as tools for testing
motional characteristics of the AL5B Robot arm. Moreover, the developed model is
implemented and tested in order to analyze and improve the algorithms of Kinematics,
Inverse Kinematics, Velocity Kinematics "Jacobian" and Trajectory Planning. The
package life cycle is documented. Then, a comparison between the simulated package
and the physical arm is accomplished in terms of motion, trajectories, and kinematics.

The developed package is used as an educational tool in to enhance the applied
and experimental research opportunities and it improve the robotics curricula at the
graduate and undergraduate levels.

Keywords: Virtual Reality, Modeling, Simulation, Interface, MATLAB/Simulink,
AL5B Robot arm, Forward Kinematics, Inverse Kinematics, Trajectory Planning,
Jacobian

 iv

 ملخص

 بوت تعليمي ذو خمس مفاصلو لذراع رةربط ومحاكا

 على العمل مع معدات باهظة طلابكثير من الجامعات والمعاهد صعوبة في تدريب التواجه ال
وذلك قلة توافر الروبوتات هي وهناك مشكلة مشتركة تواجهها المؤسسات التعليمية .الثمن

 من أجل الحصول على خبرة قيمةمج التعلمية والتي يستخدمها الطلاب في البرا. لإرتفاع ثمنها
ت له اهمية قصوي في تصميم برمجيات لعمل محاكاه مع الربولذلك فإن . في مجال التحكم

علاوةً علي ذلك الخبرة العملية في برمجة أجهزة الروبوت تعطي الطلبة فهم . رالوقت الحاض
 .معمق

 AL5B استخدم ذراع الربووت حيث برامج المحاكاه عن وضع فصيلاًهذا العمل سوف يقدم ت
 بتصميم منهجي باستخدام برنامج الواقع الافتراضي ربطتعتمد علىحيث انها .كدراسة حالة

MATLAB/Simulink لعمل نموذج لهذا الربوت وايضاً استخدامهاأوتوكادأيضاً برنامج و
تم تطوير يس .AL5B من نوع الخصائص الحركية لذراع الروبوتالتصميم وكأدوات لاختبار

ت عن طريق تحليل الحركة الامامية ، الحركة العكسية ، السرعة لهذا الروبومحاكاة نموذج
سنقوم في النهاية بعمل ثم .وسيتم تنفيد جميع ما ذكر واختباره. الحركية وايضأً مسار الحركة

النسبة الحقيقي المستخدم في هذه الدراسة بمقارنة بين نموذج المحاكاه المطور مع الذراع
 .للحركة والمسارات

 في زيادةهذا العمل يساهم ان توقعنو . كأداة تعليميةهذا البرنامج المُتطورستخدم يُوسوف
 للدراسات العليا مناهج الروبوتات تطويريضاً امكانية والبحث التعليم والتدريب وافرص
 .بكالوريوسوال

 v

To my beloved parents...

...brother and sisters..

..My wife and my beloved son Mohammed

 vi

ACKNOWLEDGEMENT

At the very outset, all my prayers and thankfulness are to Allah the almighty for
facilitating this work and for granting me the opportunity to be surrounded by great and
helpful people at IUGAZA and PTC.

I would like to express my everlasting gratitude to my supervisors, Dr. Hatem Elaydi
and Dr. Iyad Abuhadrous for their valuable encouragement, guidance and monitoring,
without which this work would not have reached the point of fruition, so I ask Allah to
reward them on my behalf.

I would never have attempted to obtain a master degree if it weren’t for the
continuous encouragement that I received from my father, the man to whom I will be
grateful, for the rest of my life.

The warm heart, my mother, deserves all the credit here; she has been a source
of inspiration to me for years. I would never forget her continuous prayer for the sake of
my success.

No acknowledgement would be complete without expressing my appreciation
and thankfulness for my wife; I can't refute her long lasting patience and support which
she showed during this work and which was essential to accomplish it.

My siblings, to whom I belong, have shadowed me with their concern all the
time, so they deserve my acknowledgement too.

Finally, I am grateful to my dear friend, Eng. Sa’id Ibrahim Abu Al-Roos to help
me in completing this work.

 vii

TABLE OF CONTENTS

ABSTRACT ...III

ملخص .. IV

ACKNOWLEDGEMENT..VI

TABLE OF CONTENTS ... VII

LIST OF TABLES ..IX

LIST OF FIGURES ... X

NOMENCLATURE.. XII

ABBREVIATIONS ..XIII

CHAPTER 1 INTRODUCTION ... 1

1.1 MOTIVATION .. 1
1.2 PROBLEM STATEMENT AND GOAL ... 1
1.3 SYSTEM OVERVIEW.. 2
1.4 LITERATURE REVIEW ... 2
1.5 OBJECTIVES .. 3
1.6 THESIS CONTRIBUTION .. 4
1.7 THESIS OUTLINE... 4

CHAPTER 2 THEORETICAL BACKGROUND... 6

2.1 COMMON KINEMATIC ARRANGEMENTS OF MANIPULATORS .. 6
2.1.1. Articulated Manipulator (RRR).. 7
2.1.2. Spherical Manipulator (RRP) .. 8
2.1.3. SCARA Manipulator (RRP).. 9
2.1.4. Cylindrical Manipulator (RPP).. 10
2.1.5. Cartesian Manipulator (PPP) .. 11
2.1.6. Parallel Manipulator.. 12

2.2 KINEMATIC MODELING .. 13
2.3 SIMULATION AND MODELING TOOLS .. 15

2.3.1. UltraArc .. 16
2.3.2. RobotStudio... 16
2.3.3. CimStation Robotics ... 17
2.3.4. ROPSIM .. 17
2.3.5. RobotScript ... 17
2.3.6. Dymola.. 17
2.3.7. V-Realm Builder ... 17
2.3.8. OpenGL... 17
2.3.9. Other File Format Converters ... 18

2.4 BASIC CATEGORIES OF PROGRAMMING LANGUAGES.. 18
2.4.1. Online Programming.. 19
2.4.2. Offline Programming.. 19

CHAPTER 3 KINEMATICS ... 20

3.1 INTRODUCTION... 20
3.2 DIRECT/FORWARD KINEMATICS .. 20

3.2.1. Assigning the Coordinate Frames.. 21
3.2.2. AL5B DH Parameters... 22

3.3 INVERSE KINEMATICS... 24
3.3.1. Geometric Approach... 24
3.3.2. Analytical (algebraic) Approach.. 26

CHAPTER 4 DIFFERENTIAL KINEMATICS AND STATICS ... 30

4.1 VELOCITY KINEMATICS/ARM JACOBIAN ... 30

 viii

4.2 KINEMATIC SINGULARITIES ... 32
4.2.1. Computation of Singularities.. 33

4.3 INVERSE VELOCITY AND ACCELERATION.. 34
4.4 FORCE/TORQUE RELATIONSHIP ... 35

CHAPTER 5 TRAJECTORY PLANNING ... 37

5.1 CUBIC POLYNOMIAL TRAJECTORIES.. 37
5.2 QUANTIC POLYNOMIAL TRAJECTORIES ... 39
5.3 LINEAR SEGMENTS WITH PARABOLIC BLENDS (LSPB)... 40

CHAPTER 6 ROBOT HARDWARE AND SOFTWARE ... 44

6.1 HARDWARE ENVIRONMENT ... 44
6.1.2. CUBLOC Microcontroller.. 44
6.1.3. Personal Computer... 45
6.1.4. Interface Kit .. 45
6.1.5. DB-9 Serial Cable... 46

6.2 SOFTWARE ENVIRONMENT... 46
6.2.1. Overall System .. 46
6.2.2. CUBLOC Program... 47
6.2.3. Serial Communication .. 49

6.3 SYSTEM LIMITATIONS .. 53

CHAPTER 7 RESULTS AND DISCUSSIONS ... 55

7.1 EXPERIMENTAL RESULTS... 55
7.1.1. Forward Kinematics ... 55
7.1.2. Inverse Kinematics.. 57
7.1.3. Trajectory Planning.. 60
7.1.4. Velocity Kinematic.. 63

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS.. 69

REFERENCES.. 70

APPENDIX A: ROBOT DESCRIPTION AND SPECIFICATION... 72

APPENDIX B: ECONOMIC COST AND MATLAB FUNCTION ... 79

 ix

LIST OF TABLES

TABLE (2.1): DIFFERENCES BETWEEN THE ON-LINE AND OFF-LINE PROGRAMMING..................................... 19
TABLE (3.1): DH PARAMETER FOR AL5B ROBOT ARM.. 22
TABLE (6.1): PIN ASSIGNMENTS FOR A DB-9 SERIAL CABLE... 46
TABLE (6.2): ROBOT ARM JOINT LIMITS ... 54
TABLE (7.1): DIFFERENCES BETWEEN CALCULATED AND PHYSICAL VALUES OF AL5B ROBOT ARM 57
TABLE (7.2): DIFFERENCES BETWEEN DESIRED AND REAL VALUES OF AL5B ROBOT ARM POSITIONS 59
TABLE (A.1) AL5B ROBOT ARM DIMENSION... 72
TABLE (B.1) SOFTWARE COST AND HARDWARE COST. ... 79

 x

LIST OF FIGURES

FIGURE (1.1): SYSTEM BLOCK DIAGRAM ... 2
FIGURE (2.1): AL5B ROBOTIC ARM .. 6
FIGURE (2.2): COMPONENTS OF ROBOTIC SYSTEM... 7
FIGURE (2.3): THE ABB IRB1400 ROBOT.. 7
FIGURE (2.4): THE MOTOMAN SK16 MANIPULATOR. .. 8
FIGURE (2.5): STRUCTURE OF THE ELBOW MANIPULATOR.. 8
FIGURE (2.6): WORKSPACE OF THE ELBOW MANIPULATOR... 8
FIGURE (2.7): THE SPHERICAL MANIPULATOR... 9
FIGURE (2.8): THE STANFORD ARM.. 9
FIGURE (2.9): WORKSPACE OF THE SPHERICAL MANIPULATOR... 9
FIGURE (2.10): THE SCARA (SELECTIVE COMPLIANT ARTICULATED ROBOT FOR ASSEMBLY)............. 10
FIGURE (2.11): THE EPSON E2L653S SCARA ROBOT... 10
FIGURE (2.12): WORKSPACE OF THE SCARA MANIPULATOR. .. 10
FIGURE (2.13): THE CYLINDRICAL MANIPULATOR. ... 11
FIGURE (2.14): THE SEIKO RT3300 ROBOT.. 11
FIGURE (2.15): WORKSPACE OF THE CYLINDRICAL MANIPULATOR. ... 11
FIGURE (2.16): THE CARTESIAN MANIPULATOR. ... 12
FIGURE (2.17): THE EPSON CARTESIAN ROBOT. .. 12
FIGURE (2.18): WORKSPACE OF THE CARTESIAN MANIPULATOR. ... 12
FIGURE (2.19): THE ABB IRB940 TRICEPT PARALLEL ROBOT. .. 13
FIGURE (2.20): KINEMATICS BLOCK DIAGRAM.. 13
FIGURE (2.21): DH FRAME ASSIGNMENT ... 14
FIGURE (3.1): AL5B ROBOT ARM FRAME ASSIGNMENT.. 20
FIGURE (3.2): COORDINATE FRAMES OF AL5B ROBOTIC ARM.. 22
FIGURE (3.3): TOP VIEW OF ROBOT. ... 25
FIGURE (3.4): PLANAR VIEW OF AL5B ROBOT ARM. .. 26
FIGURE (4.1): 2-DOF PLANAR MANIPULATOR FULLY STRETCHED OUT.. 33
FIGURE (4.2): INTERNAL SINGULARITIES TYPE .. 33
FIGURE (4.3): THE FORWARD DIFFERENTIAL MOTION MODEL.. 34
FIGURE (4.4): AL5B ROBOT ARM TORQUE LABEL .. 36
FIGURE (5.1): TYPICAL JOINT SPACE TRAJECTORY .. 38
FIGURE (5.2): TRAJECTORY PLANNING BLOCK DIAGRAM ... 38
FIGURE (5.3): CUBIC POLYNOMIAL TRAJECTORY.. 39
FIGURE (5.4): QUINTIC POLYNOMIAL TRAJECTORY ... 40
FIGURE (5.5): BLEND TIMES FOR LSPB TRAJECTORY... 41
FIGURE (5.6): TRAJECTORY USING LSPB ... 43
FIGURE (6.1): HARDWARE ENVIRONMENT.. 44
FIGURE (6.2): CB280 CHIP AND CUBOC KIT .. 45
FIGURE (6.3): INTERFACE KIT.. 45
FIGURE (6.4): RC SERVO MOTOR ... 46
FIGURE (6.5): SCHEMATIC FOR A DB-9 SERIAL CABLE.. 46
FIGURE (6.6): COMPLETE SYSTEM FUNCTIONS... 47
FIGURE (6.7): FORWARD AND INVERSE KINEMATIC FLOWCHART ... 48
FIGURE (6.8): TRAJECTORY PLANNING FLOWCHART ... 49
FIGURE (6.9): GUI MAIN WINDOW... 50
FIGURE (6.10): FORWARD AND INVERSE KINEMATIC WINDOW ... 51
FIGURE (6.11): ROBOT ARM FRAME COORDINATE... 51
FIGURE (6.12): ERROR DIALOG MESSAGE... 52
FIGURE (6.13): TRAJECTORY PLANNING WINDOW... 52
FIGURE (6.14): JACOBIAN WINDOW.. 53
FIGURE (6.15): ROBOT ARM JOINTS.. 54
FIGURE (7.1): INITIAL POSITION ANGLE ... 55
FIGURE (7.2): AL5B 3D GRAPHICS INITIAL POSITION ... 56
FIGURE (7.3): FINAL POSITION ANGLE ... 56
FIGURE (7.4): AL5B 3D GRAPHICS FINAL POSITION.. 57
FIGURE (7.5): X, Y, Z AND WARTG INITIAL POSITION.. 58
FIGURE (7.6): X, Y, Z AND WARTG FINAL POSITION.. 58

 xi

FIGURE (7.7): AL5B 3D GRAPHICS FINAL POSITION WITH ELBOW UP SOLUTION 59
FIGURE (7.8): AL5B 3D GRAPHICS FINAL POSITION WITH ELBOW DOWN SOLUTION 59
FIGURE (7.9): TRAJECTORY EDITOR ... 60
FIGURE (7.10): CUBIC POLYNOMIAL TRAJECTORY... 61
FIGURE (7.11): QUINTIC POLYNOMIAL TRAJECTORY ... 62
FIGURE (7.12): LSPB TRAJECTORY EDITOR... 62
FIGURE (7.13): LSPB POLYNOMIAL TRAJECTORY ... 63
FIGURE (7.14): EXAMPLE 1 JACOBIAN MATRIX.. 63
FIGURE (7.15): EXAMPLE 1 SINGULAR MODE .. 63
FIGURE (7.16): EXAMPLE 2 JACOBIAN MATRIX.. 64
FIGURE (7.17): EXAMPLE 2 SINGULAR MODE .. 64
FIGURE (7.18): EXAMPLE 3 TORQUE - FORCE RELATIONSHIP .. 64
FIGURE (7.19): EXAMPLE 4 TORQUE - FORCE RELATIONSHIP .. 65
FIGURE (7.20): EXAMPLE 5 END-EFFECTOR AND JOINTS VELOCITY .. 65
FIGURE (7.21): EXAMPLE 6 END-EFFECTOR AND JOINTS VELOCITY .. 65
FIGURE (7.22): DH INITIAL PARAMETER .. 66
FIGURE (7.23): EXAMPLE 7 ROBOT ARM FRAME COORDINATE ... 66
FIGURE (7.24): EXAMPLE 8 DH PARAMETER.. 66
FIGURE (7.25): EXAMPLE 8 ROBOT ARM FRAME COORDINATE ... 67
FIGURE (7.26): EXAMPLE 8 ROBOT ARM 3D GRAPHICAL .. 67
FIGURE (7.27): MOVE BLOCKS FROM INITIAL POSITION TO FINAL POSITION .. 68

 xii

NOMENCLATURE

3D Three-Dimensional Graphics
DOF Degrees of Freedom
GUI Graphical User Interface
RSS Robot Simulation Software
VSP Visual Software Program
PC Personal Computer
DH Denavit-Hartenberg
FK Forward Kinematic
IK Inverse Kinematic
RRP Revolute – Revolute - Prismatic
RRR Revolute – Revolute - Revolute
WARTG Wrist Angle Relative to Ground
TP Trajectory Planning
LSPB Linear Segments with Parabolic Blends
ADC Analogue to Digital Converter
PWM Pulse-Width Modulation
PTC Palestine Technical Collage

 xiii

ABBREVIATIONS

iT Homogenous Transformation Matrix

ia Link Length

i Link Twist of Two Joints

id Link Offset

i Joint Angle

ic Cosine i

is Sin i

iq Joint angle

R Rotation Matrix

θ234 2 + θ3 + θ4

 Joint Velocities

p Linear Velocities

ω Angular Velocities

J Jacobian Matrix

A Pseudo Inverse

 End-Effector Velocity

F Forces

τ Torques

δ Displacement Caused by the Force

()q t Angle Move

()q t Angle Velocity

()q t Angle Acceleration

0q Initial Angle Value

fq Final Angle Value

0v Initial Angle Velocity

fv Final Angle Velocity

0t Initial Time Value

ft Final Time Value

rad Radian

deg Degrees

 xiv

Chapter 1: Introduction

 1

CHAPTER 1 INTRODUCTION

1.1 Motivation

Over the last two decades, robotics education has been based on mobile robotics and
manipulator-based robotics. The accessibility of small inexpensive mobile robots has
promoted their use in the classroom across abroad spectrum of educational levels all
over the world [KOL 01]; however, robotics is still an emerging topic in Gaza strip and
access to commercial robots is next to impossible.

Researchers around the world developed educational models and exposed
kindergarten students [MIL 00] and middle to high school students [WED 02] to hands-
on learning employing mobile robotics. Robotics education on undergraduate and
graduate levels is still the main focus of educators [FER 00].

Manipulator- based robotics education requires a large startup investment; thus,
did not enjoy sharp exposure. Murphy [MUR 00] promoted the use of robotics to teach
artificial intelligence and offered hands-on learning and robot contests [MUR 01].
Sutherland [SUT 00] described a successful approach to expose undergraduate student
to robotics with limited resources. Palestine Technical College at Deir el Balah
(PTCDB) holds an annual contest and is open to all students [PTCDB].

The outcomes of this study serve these universities by developing software
package to be used as an educational tool for robotics classes by enhancing the course
with simulation and practical lab. The devolved package enriches the blended
theoretical robotics presentations introduced in these universities.

1.2 Problem Statement and Goal

There are several universities and colleges in Gaza strip that teach robotics
course; namely, the Islamic university, Alazhar University, and Palestine Technical
College. Robotics courses at local universities are mainly theoretical; there are no
practical labs to apply the theoretical concepts of these courses. The goal of this
research is to develop a visual software package, which simulates a 5DOF robot arm;
this package will cover most of the important topics given in the introductory course in
robotics manipulators. This will increase the education, training and research in
graduate and undergraduate studies in the robotics field, taking into consideration the
limited availability of educational tools for robotics courses and the high cost of robot
equipments and tools.

The AL5B robot arm [LYN 06] presents a simple inexpensive solution and a
good example for robotic manipulators, this arm is chosen as a case study in this
research. MATLAB/Simulink and AutoCAD will be used for testing motional
characteristics of the arm. A complete study and mathematical analysis for the forward
kinematics, inverse kinematics, velocity kinematics (Jacobian), and trajectory planning
problems is presented, implemented and tested. An interfacing card is designed and
developed. The developed algorithms were implemented and applied to the AL5B
physical arm. A comparison between the kinematic solutions of the developed software
package with the robot arm’s physical motional behaviors is discussed.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 2

1.3 System Overview

The complete system block diagram shown in Figure (1.1) consists of many parts like,
personal computer with serial communication adapter, CUBLOC microcontroller [COM
05] and AL5B Robot arm. The Graphical User Interface (GUI), designed by MATLAB
software, consists of four parts; forward, inverse kinematic, path and trajectory planning,
Jacobian and controller. The forward kinematics consists of finding the position of the
end-effector in the space knowing the movements of its joints. The inverse kinematics
consists of the determination of the joint variables corresponding to a given end-effector
position and orientation. Path is defined as sequence of robot configurations in
particular order without regard for timing of these configurations, trajectory is
concerned about when each part of the path must be obtained thus specifying timing.
Each joint velocity at the specified joint positions needs to be found; this is
accomplished using Jacobian. The last part is the simple controller block used to control
the robot arm by GUI program.

Figure (1.1): System Block Diagram

Serial communication is the simplest way to communicate between two devices.
A serial interface is established through a serial port object, which can be created using
the SERIAL function by MATLAB. The main function of the CUBLOC
microcontroller is making interface between PC and AL5B robot arm by receiving data
from serial port and sending this data to the arm servo motors. then feeding the data
from servo motors encoders back to the PC through serial port.

1.4 Literature Review

Many industrial robot arms are built with simple geometries such as intersecting
or parallel joint axes to simplify the associated kinematics computations [MAN 96].
However, their costs are high for students and research workers. AL5B is a good
alternative for such robot manipulators, because it is inexpensive, flexible and similar to
industrial robot arms.

Papers that developed software for modeling 2D and 3D robots arm such as
[MAN 96, KOY 07 and GUR 97], forward and inverse Kinematic are analyzed and then
according to the model a computer simulation is generated, a simulation and testing
characteristics of this robot arm is prepared by a programming languages. 2D and 3D
visualization are used to build GUI friendly for users as educational tool. The software
is incomplete, because it did not investigate anything about the path and trajectory
planning.

[PAS 07] used V-Realm Builder 2.0 and Simulink for virtual reality prototyping
and testing the viability of designs before the implementation phase for the industrial
SCARA robot, located in the Control Robot Lab of the University of Oradea. In

Chapter 1: Introduction

 3

addition, they illustrated the use of the 3D Joystick for manipulating objects in a virtual
world.

Martin and Arya in [ROH 00, WIR 04], developed Robot Simulation Software
for forward and inverse kinematic using VRML and MATLAB Simulink. The output of
the system had good graphic capability and flexibility in terms of 3D representation.
However, the system was not able to run as stand-alone application and was not user
friendly.

[JAM 08] reported the development of the Robot Simulation Software (RSS)
where a Mitsubishi RV-2AJ robot was taken as a case study. The project adopted the
virtual reality interface design methodology and utilized MATLAB/Simulink and V-
Realm Builder as tools. A robot model was developed and a RSS software life cycle
was implemented.

[MAR 06] presented a Visual C++ and OpenGL application for 3D simulation
of the serial industrial robots. It started from the forward kinematics of the robot taken
into consideration. The functions implemented in the source code are able to calculate
the position and orientation of each robot joint, including the position and orientation of
the robot gripper. With the help of the OpenGL functions, the application was able to
draw and simulate the 3D kinematic scheme of the robot.

An approach proposed to develop real-time simulators of complex
electromechanical systems by exploiting the most powerful non real-time modeling and
control design tools in [FER 08]. This approach relied on standard and commercial tools
and on open source packages, and required the development of few interface blocks to
be included within the Simulink and Dymola models, respectively. The modeling and
validation work carried out on a joint prototype in the early phase of the arm
development process could be fully included in the real-time simulation model,
achieving quite accurate and reliable results almost effortlessly. The Simulink arm
controller description can also be easily tested in an incremental way. A significant
effort was devoted to create a human machine interface able to support the input of
motion commands and force disturbances, together with the 3D visualization of the arm
motion, relying on a powerful open source package.

There are large amount of literature which discuses the kinematics analysis of
industrial robots [CRA 05]. The majority of them shy away from discussing the low
cost educational robot arms. After going over the last group of papers, we can notice
that none of them gives a complete educational tool to control AL5B robot arm for
student at college level. Thus, this research will study mathematical model and
kinematical analysis of the AL5B educational robot. A Visual Software Program (VSP)
will be also developed to show the robot arm motion with respect to its mathematical
analysis and interfacing with physical robot.

1.5 Objectives

In order to achieve the main goal objectives of this study, the work is going to be
divided into two phases.

Phase 1

1) Developing a visual software package, for testing motional characteristics of the
AL5B Robot arm

Simulation and Interfacing of 5 DOF Educational Robot Arm

 4

a. Drawing a 3D Model for the Robot Arm using MATLAB/Simulink and
AutoCAD.

b. Designing a Graphical User Interface "GUI" using MATLAB.

2) Derivation of a complete kinematic model for the robot.

a. Studying the theory of kinematics in order to analyze of the 5 DOF
AL5B Robot Arm.

b. Applying the Denavit-Hartenberg (D-H) model to the physical arm links
and joints to derive the forward kinematic equations.

c. Finding the Inverse kinematics solutions for this educational manipulator
and suggesting a method for decreasing multiple solutions in IK.

3) Derivation of the Velocity Kinematics (Jacobian) of the Manipulator considering
singularity.

4) Applying a Path and Trajectory planning algorithm.

Phase 2:

1) Development of an electronic interfacing circuit between the AL5B robot arm
and the developed GUI program.

2) Holding a comparison between the physical arm and the simulated one.

1.6 Thesis Contribution

The contribution of this thesis concentrates on developing two components related to
the AL5B. The first component is concerned with a simulation toolbox, while the
second component focuses on interfacing the physical AL5B with the PC.

In the first component, a 3D model is developed to emulate the AL5B motion,
which is manly based on a developed analytical kinematics.

The second component develops an interface between the AL5B and the PC using serial
communication. A new type of microcontrollers called CUBLOC is used to interface
the AL5B with PC by designing an educational interfacing card for this purpose.

The thesis also compares the results of the real-time system with the simulation
model.

1.7 Thesis Outline

This thesis structured in the following way: chapter 2 provides theoretical background,
which describes the different types of robot arm and shows the workspace for each of
them. Some definition such as kinematic modeling, simulation and programming
techniques are presented through this chapter. Chapter 3 discusses the Kinematics
analysis: the DH parameters, forward, inverse kinematic and it shows the modeling of
the robot arm under study. Chapter 4 illustrates the Jacobian equation of the robot arm
in section 1. Section 2 presents the singularity problem and the last two sections present
the inverse velocity equation and the relation between the torque and the force. Chapter
5 discusses the Trajectory Planning problem and it illustrates the different types of
trajectories used in this thesis like Cubic and Quantic polynomials trajectories. Chapter
6 shows the hardware and software implementation of the AL5B robot arm. Explain the

Chapter 1: Introduction

 5

main function of the software and flowchart. Also in this chapter, we explain how we
can make the interface between robot and computer. Chapter 7 shows the results of
testing the developed system are presented and discussed. Finally, a general conclusion
is provided as well as recommendations and perspectives for future work are presented
in chapter 8.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 6

CHAPTER 2 THEORETICAL BACKGROUND

2.1 Common Kinematic Arrangements of Manipulators

Robotics is a relatively young field of modern technology that crosses traditional
engineering boundaries. Understanding the complexity of robots and their applications
requires knowledge of electrical engineering, mechanical engineering, systems and
industrial engineering, computer science, economics, and mathematics. New disciplines
of engineering, such as manufacturing engineering, applications engineering, and
knowledge engineering have emerged to deal with the complexity of the field of
robotics and factory automation [SPO 05].

This thesis is concerned with the fundamentals of robotics, including kinematics,
motion planning, velocity kinematic, computer interfacing, and control. This chapter
introduces the most important concepts in these subjects as applied to industrial robot
manipulators. The majority of robot applications deal with industrial robot arms
operating in structured factory environments so that a first introduction to the subject of
robotics must include a rigorous treatment of the topics in this thesis.

The word robot was introduced in 1920 be a Czech playwright which mean
work. Basically, a robot is an autonomous device that use computer such as
teleoperators, underwater vehicles, autonomous land rovers, etc [SPO 05].

Figure (2.1): AL5B Robotic Arm

Figure (2.1) shows a typical robot that is essentially a mechanical arm operating
under computer control. Such devices, though far from the robots of science fiction, are
nevertheless extremely complex electro-mechanical systems whose analytical
description requires advanced methods, presenting many challenging and interesting
research problems.

A robot manipulator is seen as more than just a series of mechanical linkages.
Arm mechanism is only one element in a comprehensive automated system, is shown in
Figure (2.2) which consists of an arm, external power source, end-of-arm tooling,
external and internal sensors, computer interface, and control computer. Even the
programmed software is considered as an integral part of the overall system, since the

Chapter 2: Theoretical Background

 7

manner in which the robot is programmed and controlled can have a major impact on its
performance and subsequent range of applications.

Figure (2.2): Components of Robotic System.

Although there are many possible ways that use prismatic and revolute joints to
construct kinematic chains, in practice only a few of these are commonly used. Here we
briefly describe several arrangements that are most typical.

2.1.1. Articulated Manipulator (RRR)

Figure (2.3) shows the (ABB IRB1400) articulated manipulator which called a revolute
manipulator [SPO 05]. The (RRR) means the type of joint is (Revolute – Revolute –
Revolute) and (P) means the type of joint is (Prismatic)

Figure (2.3): The ABB IRB1400 Robot.

A common revolute joint design is the parallelogram linkage such as the
motorman SK16, shown in Figure (2.4) in both of these arrangements joint axis z2 is
parallel to z1 and both z1 and z2 are perpendicular to z0. This kind of manipulator is
known as an elbow manipulator. The structure and terminology associated with the
elbow manipulator are shown in Figure (2.5) and its workspace is shown in Figure (2.6)

The revolute manipulator provides relatively large freedom of movement in a
compact space; the elbow manipulator has several advantages that make it an attractive
and popular design. The parallelogram linkage manipulator is that the actuator for joint
3 is located on link 1. Since the weight of the motor is born by link 1, links 2 and 3 can
be made more lightweight and the motors themselves can be less powerful.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 8

Figure (2.4): The Motoman SK16 Manipulator.

Figure (2.5): Structure of The Elbow Manipulator.

Figure (2.6): Workspace of the Elbow Manipulator.

2.1.2. Spherical Manipulator (RRP)

The spherical manipulator can be obtained by replacing the third or elbow joint in the
revolute manipulator by a prismatic joint, as shown in Figure (2.7). The term spherical
manipulator derives from the fact that the spherical coordinates defining the position of
the end-effector with respect to a frame whose origin lies at the intersection of the three
z-axes are the same as the first three joint variables. Figure (2.8) shows the Stanford arm,

Chapter 2: Theoretical Background

 9

[SPO 05], one of the most well known spherical robots. The workspace of a spherical
manipulator is shown in Figure (2.9).

Figure (2.7): The Spherical Manipulator.

Figure (2.8): The Stanford Arm.

Figure (2.9): Workspace of the Spherical Manipulator.

2.1.3. SCARA Manipulator (RRP)

The SCARA arm (for Selective Compliant Articulated Robot for Assembly) shown in
Figure (2.10) is a popular manipulator [SPO 05]. The SCARA has an RRP structure; it
is quite different from the spherical manipulator in both appearance and in its range of
applications. The SCARA has z0, z1, and z2 mutually parallel. Figure (2.11) shows the
Epson E2L653S manipulator [SPO 05]. The SCARA manipulator workspace is shown
in Figure (2.12)

Simulation and Interfacing of 5 DOF Educational Robot Arm

 10

Figure (2.10): The SCARA (Selective Compliant Articulated Robot for Assembly).

Figure (2.11): The Epson E2L653S SCARA Robot.

Figure (2.12): Workspace of the SCARA Manipulator.

2.1.4. Cylindrical Manipulator (RPP)

The cylindrical manipulator is shown in Figure (2.13).The first joint is revolute and
produces a rotation about the base, while the second and third joints are prismatic. As
the name suggests, the joint variables are the cylindrical coordinates of the end-effector
with respect to the base. A cylindrical robot, the Seiko RT3300 [SPO 05], is shown in
Figure (2.14), with its workspace shown in Figure (2.15).

Chapter 2: Theoretical Background

 11

Figure (2.13): The Cylindrical Manipulator.

Figure (2.14): The Seiko RT3300 Robot.

Figure (2.15): Workspace of the Cylindrical Manipulator.

2.1.5. Cartesian Manipulator (PPP)

A manipulator whose first three joints are prismatic is known as a Cartesian manipulator,
shown in Figure (2.16). For the Cartesian manipulator, the joint variables are the
Cartesian coordinates of the end-effector with respect to the base. An example of a
Cartesian robot, from Epson-Seiko, [SPO 05] is shown in Figure (2.17). The workspace
of a Cartesian manipulator is shown in Figure (2.18).

Simulation and Interfacing of 5 DOF Educational Robot Arm

 12

Figure (2.16): The Cartesian Manipulator.

Figure (2.17): The Epson Cartesian Robot.

Figure (2.18): Workspace of the Cartesian Manipulator.

2.1.6. Parallel Manipulator

A parallel manipulator has two or more independent kinematic chains connecting the
base to the end-effector. Figure (2.19) shows the ABB IRB 940 Tricept robot [SPO 05].
The kinematic description of parallel robots is fundamentally different from that of
serial link robots; therefore, requires different methods of analysis.

Chapter 2: Theoretical Background

 13

Figure (2.19): The ABB IRB940 Tricept Parallel Robot.

2.2 Kinematic Modeling

In robot simulation, system analysis needs to be done, such as the kinematics analysis,
its purpose is to carry through the study of the movements of each part of the robot
mechanism and its relations between itself. The kinematics analysis is divided into
forward and inverse analysis. The forward kinematics consists of finding the position of
the end-effector in the space knowing the movements of its joints as

1 2(, , ,) [, , ,]nF x y z R , and the inverse kinematics consists of the determination

of the joint variables corresponding to a given end-effector position and orientation as

1 2(, , ,) , , , nF x y z R . Figure (2.20) below shows a simplified block diagram of

kinematic modeling.

Figure (2.20): Kinematics Block Diagram

A commonly used convention for selecting frames of reference in robotic
applications is the Denavit-Hartenberg or D-H convention as shown in Figure (2.21). In
this convention each homogenous transformation iT is represented as a product of

"four" basic transformations

Forward
Kinematics

Geometric
Parameters

Position and Orientation of
the end-Effector

Joints Movements

Inverse
Kinematics

Simulation and Interfacing of 5 DOF Educational Robot Arm

 14

(,) (,) (,) (,)i i i i iT Rot z Trans z d Trans x a Rot x (2.1)

Figure (2.21): DH Frame Assignment

Where the notation (,)iRot x stands for rotation about ix axis by i ,

(,)iTrans x a is translation along ix axis by a distance ia , (,)iRot z stands for rotation

about iz axis by i , and (,)iTrans z d is the translation along iz axis by a distance di.

0 0 1 0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0
0 0 0 1

i i i

i i i i
i

i i i

i i i i i i i

i i i i i i i

i i i

c s a

s c c s
T

d s c

c s c s s a c

s c c c s a s

s c d

 (2.2)

Where the four quantities , , , i i i ia d are the parameters of link i and joint i.

The Figure below illustrates the link frames attached so that frame {i} attached rigidly
to link i.

The various parameters in previous equation are given the following names:

ia (Length) is the distance from 1 zi iz to , measured along iz ;

i (Twist), is the angle between 1 i iz and z , measured about ix ;

id (Offset), is the distance from 1to i ix x measured along iz ; and

i (Angle), is the angle between 1and i ix x measured about iz ;

In the usual case of a revolute joint, is called the joint variable, the other three quantities
are the fixed link parameters.

Another expression can be used where a homogeneous transformation matrix H
represents a rotation by angle α about the current x-axis followed by a translation of a
units along the current x-axis, followed by a translation of d units along the current z-

Chapter 2: Theoretical Background

 15

axis, followed by a rotation by angle θ about the current z-axis, is given by H where H
is given by:

 , , , , x x a z d zH Rot Trans Trans Rot (2.3)

0

0 0 0 1

c s a

c s c c s ds

s s s c c dc

 (2.4)

The homogeneous representation given in previous equation is a special case of
homogeneous coordinates, which have been extensively used in the field of computer
graphics. There, one is interested in scaling and/or perspective transformations in
addition to translation and rotation. The most general homogeneous transformation
takes the form

3 3 3 1

1 3 1 1

0 0 0 1

x x

x x

x x x x

y y y y

z z z z

R d Rotation Translation
H

f s Perspective Scale factor

n o a p

n o a p

n o a p

 (2.5)

Where the 3 by 3-augmented matrix, R3x3, represents the rotation, the 3 by 1
augmented matrixes, d3x1, represents the translation; the f1x3 represents the perspective
transformation and S1x1 is the factor of universal scale.

The direct kinematics made from the composition of homogeneous
transformation matrices, where each translation (prismatic joint) or rotations (rotation
joint) correspond to one 4 by 4-augmented matrix:

 1
1... j j i

i j iT T T
 (2.6)

2.3 Simulation and Modeling Tools

Robot Simulation Software (RSS) and on-off line programming seem likely to be an
important issue in robotics research because it is essential for evaluating and predicting
the behavior of a robot and have increasingly important role in the evolution of
manufacturing automation. Much attention has been devoted to investigate and to
develop the on-off line programming of industrial robots. The programming trends and
challenges in the development of the RSS can be divided into two components, the
graphical user interface (GUI) and the control software. Started with the use of structure
programming language, followed with the use of third party package, object
programming language, web-programming tools, and artificial intelligence
programming language, challenge has been a concern among software developers in
order to produce better RSS that cover these two components. There are many ways for
designing a graphical user interface, for drawing 3D models and developing real time
software simulators for robotics manipulators. In addition, many excellent tools can be
used for programming these simulators such as:

1. MATLAB Virtual Realty toolbox with Simulink and V-Realm Builder.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 16

2. The AutoCAD 3D program is used to design the robot graphically;
CAD2MATLAB function can be used to convert the resulting graph to an
acceptable format by MATLAB, function takes a CAD file in (.stl or .slp)
format and converts it to MATLAB.

3. Using OpenGL graphics library under visual C++ or MATLAB.
4. Other well-known tools on the web like UltraArc, CimStation, RobotScrips,

ROPSIM, RobotStudio and Dymola.

The increasing interest in 3D graphics has gone hand in hand with the
development of a new generation of 3D graphics file formats. Although 3D package
could be expected to support tens, if not hundreds of file formats, supporting every
format is impossible. Data exchanging between software packages is difficult or
impossible. The best format to use for interchanging data often depends on the type of
3D application being used, for example, in order to move data between 3D CAD
programs such as AutoCAD, ProE or I-DEAS there are several graphics file formats
available, for example, the Autodesk DXF file format, IGES file format and ACIS SAT
file format. 3D Modelers’ and animators must also consider file formats, for example, a
common ‘in-between’ file format from 3D Studio Max to Maya is the DXF for moving
geometry between the two packages.

In this research, the file type DWG or DXF will be exported from 3D AutoCAD.
Then by using the PolyTrans program, it can be converted to SLP file, finally we can
deal easily with this format using MATLAB function “CAD2MAT”.

Visual programming is a rather wide concept. In this case however, state of the
art visual programming systems are only interesting if they are applicable to robot
programming. This approach turned out to present two types of topics, general-purpose
visual programming software and visual programming tools concentrated towards the
robot process industry. The application used in this thesis presented by visual
programming tools. They are intended for various industrially related tasks, such as the
robot industry, but need not be used specifically for programming robots. Some visual
programming tools will be introduced in the following subsections.

2.3.1. UltraArc

UltraArc is a simulation and offline programming solution, with calibration tools that let
users adjust the simulation model to accurately reflect real world device relationships.
The interface lets programmers easily modify robot devices to achieve very accurate
robot motion results [ULT].

UltraArc holds a library of arc welding robots and weld guns, including the
latest robots from ABB, Fanuc and Motoman [ULT]. It also includes a built-in CAD
package to create custom work cell components and supports direct import of CAD files
via IGES, DXF and direct translations. Robot programs can then be automatically
generated from information contained in weld details. There is also support for robot
controller-specific weld process information (seam tracking, seam searching, speeds,
currents, voltages, etc).

2.3.2. RobotStudio

RobotStudio is a software tool for simulation and offline programming for robots. It is
built on the ABB Virtual Controller, an exact copy of the real software that runs the
robots in production; hence provides very realistic simulations, using real robot
programs and configuration files [ROB].

Chapter 2: Theoretical Background

 17

2.3.3. CimStation Robotics

CimStation Robotics program is similar to RobotStudio. The advantage of CimStation
is that supports many different robot suppliers and their products [CIM].

2.3.4. ROPSIM

ROPSIM is a PC based model driven robot simulation system with 3D visualization.
The simulation is performed virtually and allows production simulation on screen. It is a
robot programming system for use in design, layout, production and maintenance of
work cells in integrated production systems [ROP].

2.3.5. RobotScript

RobotScrips it produces code textually, but because it operates in a Windows
environment, the end-user has the advantage of using any third-party software to
enhance the operation of the robot cell. It also provides an intuitive, graphical user
interface to reduce operator training and minimize errors. It can easily be customized
using the Software Development Kit to provide a standard, enterprise-wide operator
interface [ROB].

2.3.6. Dymola

Dymola is a general purpose modeling program and language, appropriate for building
all sorts of mechanical and electrical systems. It has an object-oriented approach,
enabling several of the powerful characteristics of such languages, e.g. hierarchical
structures, model classes and even inheritance [DYM].

Dymola is built on using equations for describing modeling details. Then the
equations are automatically solved and interpreted to symbolical representations. These
models and symbols can then be generated on different formats. Its supports C and
FORTRAN and is available for UNIX and Windows platforms [DYM].

2.3.7. V-Realm Builder

Virtual Reality (VR) is a system that allows one or more users to move and react in a
computer generated environment. The basic VR systems allow the user to gather visual
or sound information using computer screens, stereoscopic displays or headphones. V-
Realm Builder, which came with MATLAB Virtual Reality Toolbox, was used to make
the modifications. A VR sink was then used in the model to interface with the
workstation [MAT].

V-Realm Builder made the design of the workstation much simpler. It has
several shapes in the program that can be resized and rotated in order fit the
requirements of the desired object. Various patterns and colors are also available. The
most helpful element of the software is the definition of parent and child classes. In this
way pieces can be combined into a more complex component. All the individual parts
then use the larger module as a frame of reference. Consequently, the component can be
moved or rotated.

2.3.8. OpenGL

OpenGL is API (Application Program Interface) that does not depend on hardware’s
and Operation System (OS). It functions with high performance for the display of three

Simulation and Interfacing of 5 DOF Educational Robot Arm

 18

dimension figures though it is possible to use it to display two dimension Figures. It is
used for real-time generation of 3D-CG images of the game and so on [OPE].

2.3.9. Other File Format Converters
There are few graphics file format converters available on the market now. The most
common is PolyTrans from Okino [POL], which, according to the most recent plugging
have been seen does not yet, translate animation and does not support the ASE file
format. PolyTrans is also very expensive; however, it is widely known and used
throughout the industry. There are several websites devoted to plugging for the program
and it may be constantly updated for new file types.

Another, more recent file format converter, 3D Exploration is available as
shareware yet covers numerous file types including MAX, ASE and OBJ file format,
however, it only supports information on objects, materials, cameras and light sources,
all other information is skipped. Similarly, most other file converters support neither the
file types used, often do not support any Maya format, other than OBJ, format and do
not deal with animation at all.

PolyTrans, for example, contains the NuGraf rendering system and can be used
to perform various actions on polygonal objects, etc. and render them entirely within the
package. 3D Exploration contains a simple OpenGL interface to view the workspace;
however, it contains virtually no tools to modify the scene.

2.4 Basic Categories of Programming Languages

Virtually all robots are programmed with some kind of robot programming language.
These programming languages are used to command the robot to move to certain
locations, to output signal, and to read inputs. The programming language is what gives
robots flexibility. When learning any programming language, like a robot language or a
computer language, one of the most difficult tasks is learning what the commands are
and how to use them.

To get an overview of different types of robot programming languages [MIK 02],
it is appropriate to put them in three basic categories:

1. Specialized robot languages. These languages have been developed specifically
for robots. The commands found in these languages are mostly motion
commands with minimal logic statements available. Most of the early robot
languages were of this type, although many still exist today. VAL1 is an
example of such a robot language [MIK 02].

2. Robot library for a new general-purpose language. This is based on creating new
general- purpose language, then adding specific robot commands. They are
generally more capable than a specialized language, since they tend to have
better logic testing capabilities. KAREL is a good example of robot
programming language from Fanuc Robotics [MIK 02].

3. Robot library for an existing computer language. These languages are developed
by creating extensions to already existing popular computer programming
languages. Consequently, the robot languages resemble traditional computer
programming languages, providing the same power as these widely used
languages. RobotScript is an example of this type of language [MIK 02].

Chapter 2: Theoretical Background

 19

Today, industrial robots are programmed in one of two possible ways. In reality, these
techniques are often combined, resulting in what is known as hybrid programming. The
two main techniques are described shortly below.

2.4.1. Online Programming

Online programming means creating the control program directly on the robot’s
onboard computer; hence, by manually steering the robot to different positions using a
jog

or similar control mechanism. Each desired position contributes to the code as a
number of coordinates. An advantage with online programming is exactness and few
later corrections due to programming the actual robot in its actual real-world
environment. The main drawbacks of this method are that it is time consuming and it
has long production stops.

2.4.2. Offline Programming

In contrast to online programming, offline programming means creating the control
program on a detached unit, such as a PC. This involves either manual editing of code
in a text editor, or automatically generated code using a modeling environment. Once
the program is ready for deployment, it is moved to the robot’s computer for manual
correction and tuning. An advantage with this method is that robots can be programmed
before installation and stay in production while being reprogrammed; meaning
production breaks usually are significantly shortened. On the other hand, manual
correction sometimes gets very extensive, and a programmer is also required to write
the code offline.

The differences between the on-line and off-line programming and the practical
characteristics of off-line programming are shown in Table 2.1.

Table (2.1): Differences between the on-line and off-line programming

ON-LINE OFF-LINE
ON-LINE

PROGRAMMING
ADVANTAGES

OFF-LINE
PROGRAMMING

DISADVANTAGES

Sequential operation
mode

Parallel working
mode

Increases robot’s
efficiency

High initial costs

Operational robots
requested

No physical robot
and workcell’s
components

Provides a safe
environment for
simulation

Fast information
exchanges between
engineering
departments

Attention with errors
Early examinations
and optimizations.

Integrated CAD-CAM
systems

Reorganization

Requires staff for
supervising

Quality information
regarding the process

Simplification of
complex tasks

Necessity of robot’s
calibration in real
working environment

Extra time for
workcell’s physic
arrangement

Compound vision of
the simulation.

Verification of
programs before
loading it into robot
controller Fast and easy
optimization

Low precision

 Saving costs
Analysis provided by
simulation software

Software errors and
programming bugs

Simulation and Interfacing of 5 DOF Educational Robot Arm

 20

CHAPTER 3 KINEMATICS

3.1 Introduction

Kinematics is the description of motion without regard to the forces that cause it. It
deals with the study of position, velocity, acceleration, and higher derivatives of the
position variables.

The kinematics solutions of any robot manipulator are divided into tow solution,
the first one is the solution of Forward kinematics, and the second one is the inverse
kinematics solution. Forward kinematics will determine where the robot’s manipulator
hand will be if all joints are known. Where the inverse kinematics will calculate what
each joint variable must be if the desired position and orientation of end-effector is
determined. Hence, Forward kinematics is defined as transformation from joint space to
Cartesian space where as Inverse kinematics is defined as transformation from Cartesian
space to joint space.

3.2 Direct/Forward Kinematics

The forward kinematics problem can be stated as follows: Given the joint variables of
the robot, determine the position and orientation of the end-effector. Since each joint
has a single degree of freedom, the action of each joint can be described by a single
number, i.e. 1,2….,n, the angle of rotation in the case of a revolute joint. The
objective of forward kinematic analysis is to determine the cumulative effect of the joint
variables.

Suppose a robot has n+l links numbered from zero to n starting from the base of
the robot, which is taken as link 0. The joints are numbered from one to n, and zi is a
unit vector along the axis in space about which the links i-1 and i are connected. The i-
th joint variable is denoted by q, In the case of a revolute joint, q, is the angle of rotation,
while in the case of a prismatic joint q, is the joint translation. Next, a coordinate frame
is attached rigidly to each link. To be specific, we choose frames 1 through n such that
the frame i is rigidly attached to link i. Figure (3.1) illustrates the idea of attaching
frames rigidly to links in the case of an AL5B robot.

Figure (3.1): AL5B Robot Arm Frame Assignment
1i

iT is a homogenous matrix which is defined to transform the coordinates of a

point from frame i to frame i-1. The matrix 1i
iT is not constant, but varies as the

Chapter 3: Kinematics

 21

configuration of the robot is changed. However, the assumption that all joints are either
revolute or prismatic means that 1i

iT is a function of only a single joint variable,

namely qi. In other words,

 1 1() i i
i i iT T q (3.1)

The homogenous matrix that transforms the coordinates of a point from frame i
to frame j is denoted by j

iT (i > j). Denoting the position and orientation of the end-

effector with respect to the inertial or the base frame by a three dimensional vector 0
nd

and a 3x3 rotation matrix 0
nR , respectively, we define the homogenous matrix

0 0

0

0 1
n n

n

R d
T

 (3.2)

Then the position and orientation of the end-effector in the inertial frame are given by

 0 0 1 1
1 2 1 1 2 1(, ,....,) () ().... () n

n n n nT q q q T q T q T q (3.3)

Each homogenous transformation 1i
iT is of the form

1 1

1

0 1

i i
i i i

i

R d
T

 (3.4)

Hence

 1
1...

0 1

j j
j j i i i

i j i

R d
T T T

 (3.5)

The matrix j
iR expresses the orientation of frame i relative to frame j (i > j) and

is given by the rotational parts of the j
iT -matrices (i > j) as

 1
1...

j j i
i j iR R R

 (3.6)

The vectors j
id (i > j) are given recursively by the formula

 1
1 1

j j j i
i j i id d R d

 (3.7)

3.2.1. Assigning the Coordinate Frames

AL5B has five rotational joints and a moving grip as shown in Figure (3.1). Joint 1
represents the shoulder and its axis of motion is z1. This joint provides a rotational 1
angular motion around z1 axis in x1y1 plane. Joint 2 is identified as the Upper Arm and
its axis is perpendicular to Joint 1 axis. It provides a rotational 2 angular motion around
z2 axis in x2y2 plane. z3 axes of Joint 3 (Forearm) and Joint 4 (Wrist) are parallel to Joint
2 z-axis; they provide 3 and 4 angular motions in x3y3 and x4y4 planes respectively.
Joint five are identified as the grip rotation. Its z5 axis is vertical to z4 axis and it
provides 5 angular motions in x5y5 plane [MOH 09]. A graphical view of all the joints
was displayed in Figure. (3.2).

Simulation and Interfacing of 5 DOF Educational Robot Arm

 22

Figure (3.2): Coordinate Frames of AL5B Robotic Arm

A rigid body is completely described in space by its position to a reference frame
(translation) and its orientation.

3.2.2. AL5B DH Parameters

As explained in chapter 2 many methods can be used in the direct kinematics
calculation. The Denavit-Hartenberg analysis is one of the most used, in this method the
direct kinematics is determined from some parameters that have to be defined,
depending on each mechanism. However, it was chosen to use the homogeneous
transformation matrix. In this, analysis, once it is easily defined one coordinate
transformation between two frames, where the position and orientation are fixed one
with respect to the other it is possible to work with elementary homogeneous
transformation operations. D-H parameters for AL5B defined for the assigned frames in
Table 3.1.

 Table (3.1): DH Parameter for AL5B Robot Arm
i 1i 1ia id i

1 0 0 d1 1
*

2 90 0 0 2
*

3 0 a3 0 3
*

4 0 a4 0 (4 -90) *

5 -90 0 d5 5
*

6 0 0 0 Gripper

By substituting the parameters from Table (3.1) into equation (2.4), the transformation
matrices T1 to T6 can be obtained as shown below. For example, T1 shows the
transformation between frames 0 and 1 (designating iC as cos i and iS as sin i etc).

Chapter 3: Kinematics

 23

1 1

1 10
1

1

0 0

0 0

0 1 0

0 0 0 1

c s

s c
T

d

 (3.8)

2 2

2 2

1
2

0 0

0 0 1 0

0 0

0 0 0 1

c s

T
s c

 (3.9)

3 3

3 3

3

2
3

0

0 0

0 0 1 0

0 0 0 1

c s a

s c
T

 (3.10)

4 4

4 4

4

3
4

0

0 0

0 0 1 0

0 0 0 1

c s a

s c
T

 (3.11)

5 5

5 5

54
5

0 0

0 0 1

0 0

0 0 0 1

c s

d
T

s c

 (3.12)

5 5

5 5

0 0

0 0

0 0 1 0

0 0 0 1

Gripper

c s

s c
T

 (3.13)

Using the above values of the transformation matrices; the link transformations can be
concatenated (multiplied together) to find the single transformation that relates frame
(5) to frame (0):

 0 0 1 2 3 4
5 51 2 3 4

0 0 0 1

x x x x

y y y y

z z z z

n o a p

n o a p

n o a p
T T T T T T

 (3.14)

The transformation given by equation (3.14) is a function of all 5 joint variables. From
the robots joint position, the Cartesian position and orientation of the last link may be
computed using above equation (3.14).

The first three columns in the matrices represent the orientation of the end effectors,
whereas the last column represents the position of the end effectors [MOH 09]. The

Simulation and Interfacing of 5 DOF Educational Robot Arm

 24

orientation and position of the end effectors can be calculated in terms of joint angles
using:

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

2 3 2 3 4 2 3 2 3 4 5

 ((-) (- -))

 ((s c c -s s s)c +(-s c s -s s c)s)c -c s

 ((s c +c s)c +(-s s +c c)s)c

x

y

z

n c c c c s s c c c s c s c s c s s

n

n

 (3.15)

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

2 3 2 3 4 5 2 3 2 3 4

 -((c c c -c s s)c +(-c c s -c s c)s)s +s c

 -((s c c -s s s)c +(-s c s -s s c)s)s -c c

 (c c -s s)s)s -((s c +c s)c

x

y

z

o

o

o

 (3.16)

1 2 3 1 2 3 4 1 2 3 1 2 3 4

1 2 3 1 2 3 4 1 2 3 1 2 3 4

2 3 2 3 4 2 3 2 3 4

 -(c c c -c s s)s +(-c c s -c s c)c

 -(s c c -s s s)s +(-s c s -s s c)c

 (c c -s s)c -(s c +c s)s

x

y

z

a

a

a

 (3.17)

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 1 2 3 4 1 2 3

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 1 2 3 4 1 2 3

2 3 2 3 4 2 3 2 3 4 5 2 3 2 3 4 2 3

 (-(-) (- -)) (-)

 (-(-) (- -)) (-)

 (-() (-)) ()

x

y

z

d c c c c s s s c c s c s c c d c c c c s s a c c a

d s c c s s s s s c s s s c c d s c c s s s a s c a

d s c c s s s s c c c d s c c s a s a d

 1

 (3.18)

3.3 Inverse kinematics

Inverse Kinematics (IK) analysis determines the joint angles for desired position and
orientation in Cartesian space. Total transformation matrix in equation. (3.14) will be
used to calculate inverse kinematics equations. IK is more difficult problem than
forward kinematics.

The solution of inverse kinematic is more complex than direct kinematics and
there is not any global analytical solution method. Each manipulator needs a particular
method considering the system structure and restrictions. There are two solutions
approaches namely, geometric and algebraic used for deriving the inverse kinematics
solution. Let’s start with geometric approach.

3.3.1. Geometric Approach

Using IK-Cartesian mode, the user specifies the desired target position of the gripper in
Cartesian space as (x, y, z) where z is the height, and the angle of the gripper relative to
ground, ψ (see Figure 3.4), is held constant. This constant ψ allows users to move
objects without changing the object’s orientation (the holding a cup of liquid scenario).
In addition, by either keeping ψ fixed in position mode or keeping the wrist fixed
relative to the rest of the arm, the inverse kinematic equations can be solved in closed
form as we now show for the case of a fixed ψ [MOH 09].

The lengths d1, a3, a4 and d5 correspond to the base height, upper arm length,
forearm length and gripper length, respectively are constant. The angles θ1, θ2, θ3, θ4
and θ5 correspond to shoulder rotation, upper arm, forearm, wrist, and end effector,
respectively. These angles are updated as the specified position in space changes. We
solve for the joint angles of the arm, θ1:4 given desired position (x, y, and z) and ψ
which are inserted by the user.

From Figure (3.3), we clearly see that 1 atan2 y, x and the specified

radial distance from the base d are related to x and y by:

Chapter 3: Kinematics

 25

2 2

1

1

cos()

sin()

d d

d

d

d x y

x d

y d

 (3.19)

Figure (3.3): Top View of Robot.

Moving now to the planar view in Figure (3.4), we find a relationship between joint
angles θ2, θ3 and θ4 and ψ as follows:

 2 3 4 (3.20)

Since ψ is given, we can calculate the radial distance and height of the wrist joint:

4 5

4 5

4 3 2 4 2 3

4 3 2 4 2 3 1

cos()

sin()

cos() cos()

sin() sin()

d

d

r r a

z z a

or

r a a

z a a d

 (3.21)

Now we want to determine θ2 and θ3. We first solve for α, β and s (from Figure 3.4)
uses the law of cosines as:

2 2 2
3 4 3

4 1 4

2 2
4 1 4

tan 2(,2)

tan 2(,)

()

a s a a a s

a z d r

s z d r

 (3.22)

With these intermediate values, we can now find the remaining angle values as:

2

2 2 2
3 3 4 3 4

4 2 3

tan 2(,2)a s a a a a

 (3.23)

Simulation and Interfacing of 5 DOF Educational Robot Arm

 26

Figure (3.4): Planar View of AL5B Robot Arm.

3.3.2. Analytical (algebraic) Approach

Using the X, Y and Z resultants gotten in the direct kinematics:

 1 3 2 4 23 5 234[]x c a c a c d c (3.24)

 1 3 2 4 23 5 234[]y s a c a c d c (3.25)

 5 234 4 23 3 2 1[]z d c a s a s d (3.26)

The simplified equation is gotten:

 2 2 2 2
3 2 4 23 5 234(3.24) (3.25) a c a c x y d c (3.27)

The first joint movement, defined by θ1, can be calculated using geometric parameters
only:

1 tan 2(,)a y x

Now we can calculate θ3, by using equation (3.26):

 3 2 4 23 5 234 1(3.26) a s a s z d s d (3.28)
2 2 2 2 2 2

2 2 5 234 1 5 234 3 4

3 4

() ()
(3.27) (3.28) 3

2

z d s d x y d c a a
c

a a

 (3.29)

234 234

234 2 3 4 234 2 3 4

,

cos(), sin()

c c s s

where

c s

2 2 2 2 2 2
5 1 5 3 4

3
3 4

2
3 3

() ()

2

1

z d s d x y d c a a
c

a a

s c

 (3.30)

Chapter 3: Kinematics

 27

 3 3 3tan 2(,)a s c (3.31)

After calculate θ3 we can find θ2 by:

2

2 2
5 1 5

4 3 3 4 3

tan 2(,)

tan 2(,)

a z d s d x y d c

a a s a a c

 (3.32)

 2 2
2 5 1 5 4 3 3 4 3tan 2(,) tan 2(,)a z d s d x y d c a a s a a c (3.33)

 2 3 4 (3.34)

 4 2 3 (3.35)

We can find θ5 by using total transformation matrix in equation (3.14):

5 1 11 1 21

5 1 12 1 22

11 1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

12 1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

21 1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 5

22 1 2 3 1

-

-

 ((-) (- -))

 - ((-) (- -))

 ((-) (- -)) -

 - ((-

s s r c r

c s r c r

r c c c c s s c c c s c s c s c s s

r c c c c s s c c c s c s c s s s c

r s c c s s s c s c s s s c s c c s

r s c c s

 2 3 4 1 2 3 1 2 3 5 1 5) (- -) 4) -s s c s c s s s c s s c c

 (3.36)

 5 5 5tan 2(,)a s c (3.37)

Another algebraic solution by using total transformation matrix in equation
(3.14), we can find the inverse kinematics solution for an AL5B manipulator.

11 12 13

21 22 231 2 3 4 5
0 1 2 3 4

31 32 33

* * * *

0 0 0 1

r r r x

r r r y
T T T T T T G

r r r z

 (3.38)

To find the inverse kinematics solution for the first joint θ1 as a function of the
known elements of

end effector

baseT , the link transformation inverses are remultiplied as

shown in equation (3.39):

1

1 11 5 1 1 2 3 4 5
0 0 0 0 2 3 4* * * * * *T T T T T T T T

 (3.39)

Where
11 1

0 0*T T I

 , I is identity matrix. In this case, the above equation is given

by
1

11 5 2 3 4 5
0 0 2 3 4* * * *T T T T T T

 ; the solution of this equation is explained in equation

(3.40).

1 11 1 21 1 12 1 22 1 13 1 23 1 1 11 12 13 14

1 11 1 21 1 12 1 22 1 13 1 23 1 1 21 22 23 24

31 32 33 1 31 32 33 34

- - - -

 -

0 0 0 1 0 0 0 1

c r s r c r s r c r s r c x s y

s r c r s r c r s r c r s x c y

r r r z d

 (3.40)

Simulation and Interfacing of 5 DOF Educational Robot Arm

 28

11 2 3 2 3 4 2 3 2 3 4 5

12 2 3 2 3 4 2 3 2 3 4 5

13 2 3 2 3 4 2 3 2 3 4

14 2 3 2 3 4 2 3 2 3 4 5 2 3 2 3 4 2 3

21 5

22 5

23

24

31

((-)(-1) (- -))

-((-)(-1) (- -))

-(-) (- -)

(-(-) (- -)) (-)

-

-

0

0

((

c c s s c c s s c s c

c c s s c c s s c s s

c c s s s c s s c c

c c s s s c s s c c d c c s s a c a

s

c

 2 3 2 3 4 2 3 2 3 4 5

32 2 3 2 3 4 2 3 2 3 4 5

33 2 3 2 3 4 2 3 2 3 4

34 2 3 2 3 4 2 3 2 3 4 5 2 3 2 3 4 2 3

)(-1) (-))

-(()(-1) (-))

-() (-)

(-() (-)) ()

s c c s c c c s s s c

s c c s c c c s s s s

s c c s s c c s s c

s c c s s c c s s c d s c c s a s a

23 4 234 5 23 4 234 5 234 234 5 23 4 2 3

5 5

23 4 23 4 5 23 4 23 4 5 234 234 5 23 4 2 3

(((-1)) - (()(-1)) - -

- - 0 0

((-1)) - ((-1))

0 0 0 0

c c s c c c s s s s d c a c a

s c

s c c s c s c c s s c c d s a s a

 (3.41)

From equation (3.40), (3.41) we find:

1 1- 0c y s x

 1 tan 2(,)a y x (3.42)

To find the other variables, the following equations are obtained as a similar manner.

1

1

1

11 2 5 3 4 5
0 0 2 3 4

11 2 3 5 4 5
0 2 0 3 4

11 2 3 4 5 5
0 2 3 0 4

* * * *

* * * *

* * * *

T T T T T T

T T T T T T

T T T T T T

Now, we can compute θ2 from the above equation:

1 1 234 5 23 4 2 3

1 1 234 5 2 3 4 3

-

- ()

c x s y s d c a c a

c x s y s d c c a a

1 1 234 5
2

3 4 3()

c x s y s d
c

c a a

1 234 5 23 4 2 3

1 234 5 2 3 4 3

1 234 5 2 3 4 3

1 234 5
2

3 4 3

-

- ()

- - ()

- -

()

z d c d s a s a

z d c d s s a a

z d c d s s a a

z d c d
s

s a a

 2 2 2tan 2(,)a s c (3.43)

Similar we can find θ3:

Chapter 3: Kinematics

 29

1 1 234 5 23 4 2 3

1 234 5 23 4 2 3

2 2
1 1 234 5 23 4 2 3

2 2
1 234 5 23 4 2 3

2 2
1 1 234 5 1 234 5 3 4

3
3 4

2
3 3

-

-

[-] []

[-] []

[-] [-]

2

1

c x s y s d c a c a

z d c d s a s a

c x s y s d c a c a

z d c d s a s a

c x s y s d z d c d a a
c

a a

s c

 3 3 3tan 2(,)a s c (3.44)

234 1 13 1 23

234 33

-()

c

s c r s r

r

 234 234 234tan 2(,)a s c (3.45)

In this context, θ234 (WARTG=Wrist Angle Relative to Ground) is user supplied
by entering both xyz position coordinates of the selected target position on the
workspace and a constant WARTG value. Equation [3.40] and [3.41] elements of the
resultant matrix equation give:

5 1 11 1 21

5 1 12 1 22

-

-

s s r c r

c s r c r

 5 5 5tan 2(,)a s c (3.46)

Similar multiplication procedures for joints 4 also, yields’ θ4:

 1
01 12 23 34 45(* *) *T T T G T T (3.47)

123 13 23 1 23 23 33 4 5 4 5 4 4 5 4

23 1 13 123 23 23 33 4 5 4 5 4 4 5

5 5

* * * (-1) -(-1) - -

* * - - * -

* * * * 0 0

0 0 0 1 0 0 0 1

c r c s r s r c c c s s s d a

s c r s r c r s c s s c c d

s c

4 123 13 23 1 23 23 33

4 23 1 13 123 23 23 33

-()

-(-)

s c r c s r s r

c s c r s r c r

Which results,

 4 4 4tan 2(,)a s c (3.48)

In summary, θ1, θ2, θ3, θ4, θ5 are given by (3.42), (3.43) , (3.44), (3.48), (3.46), the initial
values of these angles are given by the user defining the initial configuration of the
robot arm.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 30

CHAPTER 4 DIFFERENTIAL KINEMATICS AND
STATICS

4.1 Velocity Kinematics/Arm Jacobian

The Jacobian is one of the most important quantities in the analysis and control of robot
motion. It is used for smooth trajectory planning and execution in the derivation of the
dynamic equation. To investigate target with specified velocity, each joint velocity at
the specified joint positions needs to be found. This is accomplished using Jacobian,
which is used to relate joint velocities to the linear and angular velocities of the end-
effector [SPO 05]. The relationships between joint velocities , and the linear and
angular velocities, p and ω respectively, of the end effector:

 ()Pp J (4.1)

 ()ww J (4.2)

1

where

n

 (4.3)

The above equations are combined to form J, which relates both linear, and
angular velocity:

 ()v J (4.4)

Where J(θ) is in the form

1

1

6
p pn

w wn

J J

J n

J J

 (4.5)

The number of columns of the Jacobian represents the number of degrees of
freedom or links of the manipulator. There are always three rows for linear velocity in
the x, y and z directions, and three for angular velocity. Hence, for a six degree of
freedom manipulator, the Jacobian is a 6 by 6 square matrix. The Jacobian can be
calculated from the following equation.

1 1

1

1

() joint

 joint

 joint

0 joint

i n i
vi

i

i
wi

z o o for revolute i
J

z for prismatic i

z for revolute i
J

for prismatic i

 (4.6)

Where: viJ angular velocity and wiJ linear velocity. For the AL5B robot arm the

Jacobian matrix is equal 6x5 [MOH 09].

 0 5 0 1 5 1 2 5 2 3 5 3 4 5 4

0 1 2 3 4

z o o z o o z o o z o o z o o
J q

z z z z z

 (4.7)

From the forward kinematic we can find:

Chapter 4: Differential Kinematics and Statics

 31

1 2 3

0 1 2 3 1 1 3

2 3 1

1 23 4 1 2 3 1 234 5 1 23 4 1 2 3

4 1 23 4 1 2 3 5 1 234 5 1 23 4 1 2 3

23 4 2 3 1 234 5

0 0 0

0 , 0 , 0 ,

0 1 1

,

c c a

o o o o c s a

d d s a d

c c a c c a c c d c c a c c a

o s c a s c a o s c d s c a s c a

s a s a d s d

 23 4 2 3 1s a s a d

 (4.8)

Moreover, we can find:

1

0 1 2 1

1 1 1 234

3 1 4 1 5 1 234

234

0 0

0 , 0 , -

1 1 0

- , - ,

0 0

s

z z z c

s s c c

z c z c z s c

s

 (4.9)

Now we can write the Jacobian matrix as shown in equation (4.10):
 1 2 3 4 5J q J J J J J (4.10)

1 234 5 1 23 4 1 2 3

1 234 5 1 23 4 1 2 3

1 0 5 0

 - - -

0

0

0

1

s c d s c a s c a

c c d c c a c c a

J z o o

 (4.11)

1 234 5 1 23 4 1 2 3

1 234 5 1 23 4 1 2 3

2 1 5 1

 - - -

0

0

0

1

s c d s c a s c a

c c d c c a c c a

J z o o

 (4.12)

1 234 5 23 4 2 3

1 234 5 23 4 2 3

1 1 234 5 1 23 4 1 2 3 1 1 234 5 1 23 4 1 2 3
3 2 5 2

1

1

- ()

- ()

 () ()

-

0

c s d s a s a

s s d s a s a

s s c d s c a s c a c c c d c c a c c a
J z o o

s

c

 (4.13)

1 234 5 23 4

1 234 5 23 4

1 1 234 5 1 23 4 1 1 234 5 1 23 4
4 3 5 3

1

1

- ()

- ()

() ()

-

0

c s d s a

s s d s a

s s c d s c a c c c d c c a
J z o o

s

c

 (4.14)

Simulation and Interfacing of 5 DOF Educational Robot Arm

 32

1 234 5

1 234 5
2 2
1 234 5 1 234 5

5 4 5 4
1

1

-

-

-

0

c s d

s s d

s c d c c d
J z o o

s

c

 (4.15)

4.2 Kinematic Singularities

The Jacobian can also be used to indicate possible configurations at which singularities
are present. Singularities are manipulator configurations in which one or more degrees
of freedom are made redundant. This reduces the ability of the robot to move in 3D
space close to a singularity, even though the area could be well within its workspace. In
order to calculate the joint velocities necessary to produce a given Cartesian velocity the
Jacobian matrix is inversed. If the inverse Jacobian is applied close to a singularity, the
joint velocities approach infinity. For this reason, it is essential that the robot be
designed so that it operates away from singularities, both boundary and internal. This is
particularly important if the inverse Jacobian is to be calculated in a real time system.

The rank of a matrix is not necessarily constant. Indeed, the rank of the manipulator
Jacobian matrix will depend on the configuration q. Configurations for which the rank
J(q) is less than its maximum value are called singularities or singular configurations.
Identifying manipulator singularities is important for several reasons:

 Singularities represent configurations from which certain directions of motion
may be unattainable.

 At singularities, bounded end-effector velocities may correspond to unbounded
joint velocities.

 At singularities, bounded end-effector forces and torques may correspond to
unbounded joint torques.

 Singularities usually (but not always) correspond to points on the boundary of
the manipulator workspace, that is, to points of maximum reach of the
manipulator.

 Singularities correspond to points in the manipulator workspace that may be
unreachable under small perturbations of the link parameters, such as length,
offset, etc.

 Near singularities there will not exist a unique solution to the inverse kinematics
problem. In such cases, there may be no solution or there may be infinitely many
solutions.

At a singular configuration, the manipulator loses one or more degrees of freedom. The
singular configurations are classified into two categories based on the location of end
effector in the workspace.

(i) Boundary singularities

The boundary singularities occur when the end effector is on the boundary of the
workspace, that is, the manipulator is either fully stretched out or fully retracted. For

Chapter 4: Differential Kinematics and Statics

 33

example, consider the case of two links, 2-DOF planar arm fully stretched out, as shown
in Figure (4.1). In this configuration, two links are in a straight line and the end effector
can be moved only in a direction perpendicular to the two links because it cannot move
out of the workspace. Thus, the manipulator loses one degree of freedom. A similar
situation will occur with 2 equal 180. Boundary singularities can be avoided by
ensuring that the manipulator is not driven to boundaries of the reachable workspaces
during its work cycle [SPO 05].

Figure (4.1): 2-DOF planar manipulator fully stretched out
(ii) Internal singularities

Internal singularities as shown in Figure (4.2) occur when the end effector is located
inside the reachable workspace of the manipulator. These are caused when two or more
joint axes become collinear or at specific end effector configurations [SPO 05].

Figure (4.2): Internal Singularities Type

In all the situations, it is essential that singularities are avoided. Therefore, one
important criterion for a good design of manipulator configuration is to minimize the
singularities.

4.2.1. Computation of Singularities

The computation of internal singularities can be carried out by analyzing the rank of the
Jacobian matrix. The Jacobian matrix loses its rank becomes ill conditioned at values of
joint variables q at which its determinant vanishes, that means if the Jacobian is a 6 × n
matrix and a configuration q is singular if and only if:

Simulation and Interfacing of 5 DOF Educational Robot Arm

 34

 det () 0J q (4.16)
If we now partition the Jacobian J into 3x3 blocks as

 11 12

21 22

| |
J J

J Jp Jo
J J

 (4.17)

As the singularities are typical of configuration and are not dependent on frames
chosen for kinematic analysis, the origin of the end effector frame can be chosen at the
end of arm point this will make 12J = 0. In such a situation computation of determinant is

greatly simplified, as

11 22J J J

Hence, for a manipulator with a spherical wrist, the arm singularities are found
from 11 0J , and wrist singularities are found from 22 0J . However, in our case the

Jacobian matrix is non-square then we can find the det J (q) by using the pseudo inverse
[SPO 05]. Let A be an m × n matrix, and let A be the pseudo inverse of A. If A is of
full rank, then A can be computed as:

1

1

1

[]

[]

T T

T T

A AA m n

A A m n

A A A m n

Then by applying the MATLAB function (pinv), the non square matrix can be
solved.

4.3 Inverse Velocity and Acceleration

The Jacobian relationship

 Jq (4.18)

specifies the end-effector velocity that will result when the joints move with velocity
q . Equation (4.18) represents the forward differential motion model or differential
model presented schematically in Figure (4.3), which is similar to the forward kinematic
model. Note that the Jacobian J(q) is a function of the joint variables [SPO 05].

Figure (4.3): The Forward Differential Motion Model

The inverse velocity problem is the problem of finding the joint velocities q that
produce the desired end-effector velocity. It is perhaps a bit surprising that the inverse
velocity relationship is conceptually simpler than inverse position. When the Jacobian is

Chapter 4: Differential Kinematics and Statics

 35

square (i.e., n nJ R) and nonsingular, this problem can be solved by simply
inverting the Jacobian matrix to give

 1 q J (4.19)

For manipulators that do not have exactly six links, the Jacobian cannot be inverted. In
this case, there will be a solution to equation (4.18) if and only if ζ lies in the range
space of the Jacobian. This can be determined by the following simple rank test. A
vector ζ belongs to the range of J if and only if

 () [() |]rank J q rank J q (4.20)

In other words, equation (4.18) may be solved for q nR provided that the rank of the
augmented matrix [() |]J q is the same as the rank of the Jacobian J (q). This is a
standard result from linear algebra, and several algorithms exist, such as Gaussian
elimination, for solving such systems of linear equations. For the case when n > 6 we
can solve for q using the right pseudo inverse of J.

4.4 Force/Torque Relationship

Interaction of the manipulator with the environment will produce forces and moments at
the end-effector or tool. Let F = (Fx, Fy, Fz, nx, ny, nz)

 T represents the vector of forces
and torques at the end-effector, expressed in the tool frame. Thus Fx, Fy, Fz are the
components of the force at the end-effector, and nx, ny, nz are the components of the
torque at the end-effector [SPO 05].

Let τ denote the vector of joint torques, and let δX represents a virtual end-
effector displacement caused by the force F. Finally, let δq represents the corresponding
virtual joint displacement. These virtual displacements are related through the
manipulator Jacobian J (q) according to

 () .x J q q (4.21)

The virtual work δw of the system is

 .T Tw F X q (4.22)

Substituting (4.21) into (4.22) yields

 (-)T Tw F J q (4.23)

This is equal to zero if the manipulator is in equilibrium. Since the generalized
coordinate q is independent, we have the equality

 () .TJ q F (4.24)

In other words, the end-effector forces are related to the joint torques by the transpose
of the manipulator Jacobian according to (4.24). Figure (4.4) shows the AL5B
manipulator with a force.

 T

X Y z x y zF , F , F ,n , n , nF (4.25)

applied at the end effector. The Jacobian of this manipulator is given by equation (4.10).
The resulting joint torques 1 2 3 4 5[]T is then given by equation (4.24). The

transpose of J is:

Simulation and Interfacing of 5 DOF Educational Robot Arm

 36

1

2

3

4

5

T

J

J

J q J

J

J

 (4.26)

Substituting Equations (4.25) and (4.26) in Equation (4.24) gives

1 1

2 2

3 3

4 4

5 5(5 1) (5 6)
(6 1)

 *

X

Y

z

x

y

x x
z x

F
J

F
J

F
J

n
J

n
J

n

 (4.27)

Using MATLAB, we can find the torque for each joint of the robot arm.

Figure (4.4): AL5B Robot Arm Torque Label

In conclusion this chapter presented the importance of the Jacobian Matrix in the
robotics manipulators, this matrix is s defined to represent the mapping of velocities
from joint space to Cartesian space. The Jacobian of a manipulator is also used for
mapping of forces and torques. When the force and moment at the end-effector are
given and the set of joint torques is required. In addition, the Jacobian is very helpful in
understanding the singular configuration of the manipulator.

Chapter 5: Trajectory Planning

 37

CHAPTER 5 TRAJECTORY PLANNING

The main problem of this chapter is to find a trajectory that connects an initial to a final
configuration while satisfying other specified constraints at the endpoints (e.g., velocity
and/or acceleration constraints). Without loss of generality, we will consider planning
the trajectory for a single joint, since the trajectories for the remaining joints will be
created independently and in exactly the same way. Thus, we will concern ourselves
with the problem of determining q (t), where q (t) is a scalar joint variable [SPO 05].

We suppose that at time t0 the joint variable satisfies

 0 0() q t q (5.1)

 0 0() q t v (5.2)

and we wish to attain the values at tf

 () f fq t q (5.3)

 () f fq t v (5.4)

Figure (5.1) shows a suitable trajectory for this motion. In addition, we may wish to
specify the constraints on initial and final accelerations. In this case, we have two
additional equations

 0 0() q t (5.5)

 () f fq t (5.6)

The desired path is approximated by a class of polynomial functions. It generates a
sequence of time-based “control set points” for the control of manipulator from the
initial configuration to its destination. Figure (5.2) shows the trajectory planning block
diagram.

5.1 Cubic Polynomial Trajectories

Suppose that we wish to generate a trajectory between two configurations, and that we
wish to specify the start and end velocities for the trajectory. One way to generate a
smooth curve such as that shown in Figure (5.1) is by a polynomial function of t. If we
have four constraints to satisfy, such as (5.1)-(5.3), we require a polynomial with four
independent coefficients that can be chosen to satisfy these constraints. Thus, we
consider a cubic trajectory of the form

 2 3
0 1 2 3() q t a a t a t a t For Distance (5.7)

Then, the desired velocity is given as

 2
1 2 3() 2 3 q t a a t a t For Velocity (5.8)

 2 3() 2 6 q t a a t For Acceleration (5.9)

Combining equations (5.7) and (5.8) with the four constraints yields four equations in
four unknowns

 2 3
0 0 1 0 2 0 3 0 q a a t a t a t (5.10)

 3 2
0 1 2 0 0 2 3v a a t a t (5.11)

Simulation and Interfacing of 5 DOF Educational Robot Arm

 38

 2 3
0 1 2 3 f f f fq a a t a t a t (5.12)

 2
1 2 3 2 3f f fv a a t a t (5.13)

These four equations can be combined into a single matrix equation

2 3
0 00 0 0

3
1 00 0

2 3
2

2
3

1

0 1 2 3

1

0 1 2 3
ff f f

ff f

a qt t t

a vt t

a qt t t

a vt t

 (5.14)

For example Figure (5.3) shows cubic trajectory with q0 = 10, qf = −20, t0=0, tf =1 and
V0 = 0, Vf =0. The corresponding angle, velocity and acceleration curves are given in
Figures (5.3).

Figure (5.1): Typical Joint Space Trajectory

Figure (5.2): Trajectory Planning Block Diagram

sequence of control set points
along desired trajectory

(continuity,
smoothness)

Trajectory
Planner

Path
constraints

Path
specification

)}(),(),({ tqtqtq

)}(),(),({ tatvtp

joint space

cartesian space

or

Chapter 5: Trajectory Planning

 39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-10

0

10

Time
A

ng
le

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-50

-40

-30

-20

-10

0

Time

V
el

oc
ity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-100

0

100

200

Time

A
cc

el
er

at
io

n

Figure (5.3): Cubic polynomial trajectory

5.2 Quantic Polynomial Trajectories

As can be seen in Figure (5.3), a cubic trajectory gives continuous positions and
velocities at the start and finish points times but discontinuities in the acceleration. The
derivative of acceleration is called the jerk. A discontinuity in acceleration leads to an
impulsive jerk, which may excite vibration modes in the manipulator and reduce
tracking accuracy.

For this reason, one may wish to specify constraints on the acceleration as well
as on the position and velocity. In this case, we have six constraints (one each for initial
and final configurations, initial and final velocities, and initial and final accelerations).
Therefore, we require a fifth order polynomial

2 3 4 5
0 1 2 3 4 5

2 3 4
1 2 3 4 5

2 3
2 3 4 5

()

() 2 3 4 5

() 2 6 12 20

q t a a t a t a t a t a t For Distance

q t a a t a t a t a t For Velocity

q t a a t a t a t For Acceleration

 (5.15)

Using equations (5.1) - (5.6) and taking the appropriate number of derivatives, we
obtain the following equations,

 2 3 4 5
0 0 1 0 2 0 3 0 4 0 5 0 q a a t a t a t a t a t (5.16)

 2 3 4
0 1 2 0 3 0 4 0 5 0 2 3 4 5v a a t a t a t a t (5.17)

 2 3
0 2 3 0 4 0 5 0 2 6 12 20a a t a t a t (5.18)

 2 3 4 5
0 1 2 3 4 5 f f f f f fq a a t a t a t a t a t (5.19)

 2 3 4
1 2 3 4 5 2 3 4 5f f f f fv a a t a t a t a t (5.20)

 2 3
2 3 4 5 2 6 12 20f f f fa a t a t a t (5.21)

which can be written as

Simulation and Interfacing of 5 DOF Educational Robot Arm

 40

2 3 4 5
0 00 0 0 0 0

3 3 4
1 00 0 0 0

2 3
2 00 0 0

2 3 4 5
3

2 3 4
4

2 3
5

1

0 1 2 3 4 5

0 0 2 6 12 20

1

0 1 2 3 4 5

0 0 0 6 12 20

ff f f f f

ff f f f

ff f f

a qt t t t t

a vt t t t

at t t

a qt t t t t

a vt t t t

at t t

 (5.22)

Figure (5.4) shows a quintic polynomial trajectory with q(0) = 0, q(2) = 40 with zero
initial and final velocities and accelerations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

Time

A
ng

le

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

0

20

40

60

80

Time

V
el

oc
ity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400

-200

0

200

400

Time

A
cc

el
er

at
io

n

Figure (5.4): Quintic Polynomial Trajectory

5.3 Linear Segments with Parabolic Blends (LSPB)

Another way to generate suitable joint space trajectories is by so-called Linear
Segments with Parabolic Blends or (LSPB) for short. This type of trajectory is
appropriate when a constant velocity is desired along a portion of the path. The LSPB
trajectory is such that the velocity is initially “ramped up” to its desired value and then
“ramped down” when it approaches the goal position. To achieve this, we specify the
desired trajectory in three parts. The first part from time t0 to time tb is a quadratic
polynomial. This results in a linear “ramp” velocity. At time tb, called the blend time,
the trajectory switches to a linear function. This corresponds to a constant velocity.
Finally, at time tf − tb the trajectory switches once again, this time to a quadratic
polynomial so that the velocity is linear.

Chapter 5: Trajectory Planning

 41

Figure (5.5): Blend times for LSPB trajectory

We choose the blend time tb so that the position curve is symmetric as shown in
Figure (5.5) for convenience suppose that t0 = zero and () 0 0q tf q . Then

between times 0 and tb we have

 2
0 1 2()q t a a t a t (5.23)

so that the velocity is

 1 2() 2q t a a t (5.24)

The constraints 0(0) q q and 0 0 q imply that

 0 0 a q (5.25)

 1 0a (5.26)

At time tb we want the velocity to equal a given constant, say V. Thus, we have
 2() 2 b bq t a t V (5.27)

This implies that

 2
2 b

V
a

t
 (5.28)

Therefore, the required trajectory between 0 and tb with
b

V

t
 is given as

 2 2
0 0()

2 2b

V
q t q t q t

t

 (5.29)

 ()
b

V
q t t t

t
 (5.30)

b

V
q

t
 (5.31)

Where denotes the acceleration.
Now, between time tf and tf - tb, the trajectory is a linear segment (corresponding to a
constant velocity V)
 0 1 0() q t a a t a Vt (5.32)

Since, by symmetry,

 0
()

2 2
f ft q q

q

 (5.33)

Simulation and Interfacing of 5 DOF Educational Robot Arm

 42

We have

 0
0

2 2
f fq q t

a V

 (5.34)

which yields

 0
0

 -

2
f fq q V t

a

 (5.35)

Since the two segments must “blend” at time tb we require

 0
0

 -

2 2
f f

b b

q q V tV
q t Vt

 (5.36)

which gives upon solving for the blend time tb

 0 -
 f f

b

q q V t
t

V

 (5.37)

Note that we have the constraint 0
2
f

b

t
t . This leads to the inequality

 0 02()f f
f

q q q q
t

V V

 (5.38)

the inequality can be written in another way

 0 02()f f

f f

q q q q
V

t t

 (5.39)

Thus, the specified velocity must be between these limits or the motion is not possible.
The portion of the trajectory between tf-tb and tf is now found by symmetry
considerations. The complete LSPB trajectory is given by

2
0

0

2
2

 0
2

() -
2

 -
2 2

b

f f
b f b

f
f f f b f

a
q t t t

q q Vt
q t Vt t t t t

at a
q at t t t t t t

 (5.40)

Figure (5.6) shows such an LSPB trajectory q0= zero, qf = 40, and t0 =0, tf =1, where the

maximum velocity V = 60. In this case
1

3bt . The velocity and acceleration curves are

given in the same Figure.

Chapter 5: Trajectory Planning

 43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

Time
A

ng
le

Trajectory using LSPB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

Time

V
el

oc
ity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-100

0

100

200

Time

A
cc

el
er

at
io

n

Figure (5.6): Trajectory using LSPB

Simulation and Interfacing of 5 DOF Educational Robot Arm

 44

CHAPTER 6 ROBOT HARDWARE AND SOFTWARE

To achieve a control of a robot arm by using personal computer, we must make the
connection between the robot and PC. This connection is called interface connection
and it is done by using a microcontroller. Microcontrollers are inexpensive devices
commonly used in embedded computing applications to impart computing and smart
decision-making capabilities to machines, products, and processes. Microcontrollers are
designed to interface to and interact with electrical/electronic devices, sensors and
actuators, and high-tech gadgets to automate systems. Microcontrollers are generally
embedded directly into the product or process for automated decision-making. They are
not meant to interface with human beings; however, microcontrollers do not have
graphical user interface (GUI) capabilities that are common in many personal computer
(PC) applications. The complete control process can be divided into two categories,
hardware and software. Now we will discuss individually each one of these categories.

6.1 Hardware Environment

The hardware environment for this thesis consists of a CUBLOC microcontroller, a PC,
and a data link between the PC and AL5B robot arm. The microcontroller is a device
that interfaces to sensors and robot actuators and performs embedded computing. The
PC is used to control the robot by GUI; it is used to write the user defined embedded
program which is to be run on the microcontroller. Also serves as a debugging
environment when prototyping microcontroller based products and processes. It allows
the user to receive sensory information and other selected data. A data link is needed for
the microcontroller and PC to communicate. In this thesis, we use a serial
communication link(wire) between the microcontroller and PC. Figure (6.1) shows the
hardware environment used in this thesis. A robot arm with CUBLOC Kit is shown
connected to a PC through a DB-9 serial cable.

Figure (6.1): Hardware environment

6.1.2. CUBLOC Microcontroller

The CUBLOC “CB280” with 64-pin is manufactured by Comfile Technology where 49
of its pins can be used for I/O operations. It can be powered with 6-12DC volt, where
regulators on its Kit supply it with a steady 5VDC. The CB280 comes with 80KB
Program Memory (Flash), 4KB Electronically Erasable Programmable ROM
(EEPROM), and a small amount of 2K RAM. The microprocessor used in CB280 is
Atmega128 that runs at 18.432 MHz with Program Speed of 36,000/sec. The CUBLOC
is programmed with CublocStudio in BASIC and/or Ladder Logic Language; the
instruction set is permanently stored on the CUBLOC ROM. The user-defined program
is downloaded into the EEPROM from a PC through a DB-9 serial cable connection
between the PC and CB280 Kit. CB280 have eight Channels for Analog Inputs 10-bit

Chapter 6: Robot Hardware and Software

 45

ADCs, 6 Channel Analog Outputs 16-bit PWMs (DACs), 2 Channel 16-bit High Speed
Counters, 2 High-speed hardware-independent serial ports and 4 Channels External
Interrupts. Each pin can source (supply) a maximum current of 40mA. See [COM 05]
for more details on CUBLOC hardware features.

Figure (6.2): CB280 Chip and CUBOC Kit

6.1.3. Personal Computer

As previously mentioned, the PC is used to write Basic programs that the CUBLOC
executes and to display sensory data processed by the CUBLOC and control the robot
using MATLAB GUI. Any PC that supports MATLAB can be used. In this thesis, a
Pentium class PC running MATLAB 7.5 under Windows vista is used.

6.1.4. Interface Kit

The AL5B consists of a group of 6 RC servo motors. An electronics interfacing circuit
(Figure (6.3)) is designed to connect the servo motor group to the CUBLOC
microcontroller. This interfacing circuit consists of input and output ports; those can be
easily connected to the CUBLOC and the servo motor group. Moreover, designed
circuit has 6 PWM channels, 8 ADC channels and other I/O pins.

Figure (6.3): Interface kit

Referring to the RC servo motor shown in Figure (6.4), there are three wires to
the RC servo motor. The black wire is ground and red wire is for power. The third wire
“yellow” for inputting PWM signal. We can use the PWM to easily implement an RC
Servo motor into AL5B robot.

The RC servo motor will move to a location set by pulse and duty value and will
hold its position. By being able to control the exact angles at which the RC servo stops,
we can control the RC servo as freely as we want. In this case, of control the RC servo
motor has internal feedback. Because we want to measure the angle of all joint in the
arm we modified the servo motor by cutting the internal signal feedback and connect it

Simulation and Interfacing of 5 DOF Educational Robot Arm

 46

to the ADC input from interface kit to achieve the closed loop control by send these
angles to the computer by CB280 microcontroller.

Figure (6.4): RC Servo Motor

6.1.5. DB-9 Serial Cable

The CUBLOC and PC communicate through a serial communication link. A variety of
serial communication links are currently in use. The CUBLOC uses the RS-232 serial
communication. The serial cable, which is used in this thesis, is called the DB-9 serial
cable. The cable links a serial, or COM, port on the PC to the CB280 Kit. This allows
the user to download a program into the CUBLOC. In addition, this serial connection
enables data communication between the CUBLOC and the PC. The pinout schematic
for a DB-9 serial cable is shown in Figure (6.5).

Figure (6.5): Schematic for a DB-9 Serial Cable

Each of the pins performs a specific task to which it is assigned. The assignment
for each pin is shown in Table (6.1).

Table (6.1): Pin assignments for a DB-9 serial cable
Pin # Label Signal Name Signal Type

1 CD Carrier detect Control

2 RD Received data Data

3 TD Transmitted data Data

4 DTR Data terminal ready Control

5 GND Signal ground Ground

6 DSR Data set ready Control

7 RTS Request to send Control

8 CTS Clear to send Control

9 RI Ring indicator Control

6.2 Software Environment

Software environment can be divided into two parts: the CUBLOC microcontroller
program and MATLAB Program. In CUBLOC program, we write a code to make the
interfacing between PC and AL5B arm. The MATLAB program consists of the Serial
Communication code and the graphical user interface (GUI). In this section, we explain
the complete system functions, CUBLOC program and MATLAB program.

6.2.1. Overall System

The complete system functions is shown in Figure (6.6) it consists of four parts, forward
kinematics, inverse kinematic, trajectory planning and a controller.

Chapter 6: Robot Hardware and Software

 47

Figure (6.6): Complete System Functions

The forward kinematics (FK) consists of finding the position and orientation of
the end-effector in the space knowing the movements of its joints and after calculating
the FK we can compute the Jacobian and arm singularity. The FK flowchart is shown in
Figure (6.7). The inverse kinematics (IK) consists of the determination of the joint
variables corresponding to a given end-effector position and orientation. The IK
flowchart is shown in Figure (6.7).

The path is defined as a sequence of robot configurations in particular order with
no regard to the timing of these configurations. Trajectory is concerned with the
specific time for each part of the path. Each joint velocity at the specified joint positions
needs to be found. This is accomplished using the Jacobian. Figure (6.8) shows
Trajectory Planning Flowchart. The last part is the controller of the robot arm by GUI
program. Next, we describe various elements of the software environment used in this
thesis.

6.2.2. CUBLOC Program

The CB280 is programmed using the CublocStudio in basic programming language. It
is a BASIC-like language developed by Parallax, Inc. In addition to simple arithmetic,
the CB280 executes certain task specific commands. See [COM 05] for more details on
the CUBLOC CB280 programming language.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 48

Figure (6.7): Forward and Inverse Kinematic Flowchart

Chapter 6: Robot Hardware and Software

 49

Figure (6.8): Trajectory Planning Flowchart

6.2.3. Serial Communication

The serial communication is a low-level protocol used for data communication between
two or more devices. Serial communication uses a data port to send/receive data in a
serial manner, i.e., one bit at a time. Programming two or more devices to communicate
serially requires that the devices operate at the same communication rates. Configure
serial port communications

Simulation and Interfacing of 5 DOF Educational Robot Arm

 50

Here is an example serial session connecting MATLAB to the serial port
(COM1) with a baud rate of 4800:

 s = serial ('COM1');
 set(s,'BaudRate', 4800);
 fopen(s);
 fprintf(s,'*IDN?')
 out = fscanf(s);
 fclose(s)
 delete(s)
 clear s

The “*IDN?” Command above is a typical instrument command and can be replaced by
any command that is valid for your specific device. *IDN queries the device for
identification information, which is returned to out. If your device does not support this
command, or if it is connected to a different serial port, you should modify the above
example accordingly.

 Graphical User Interface

The GUI for the AL5B robotic arm control was written in MATLAB program;
MATLAB is a powerful software package that allows for plotting data in multiple
dimensions and it easy to work with three dimensions. The program consists of six
different windows of the arm control.

The main screen of the GUI program, shown in Figure (6.9), consists of five-tab
window, Forward Kinematic, Inverse Kinematic, Trajectory Planning, Jacobian and
controller. Now we will explain the entire screen in detail in the following explanation:

Figure (6.9): GUI Main Window
1- Forward and inverse kinematic window

There are two parts of this window; the first is the forward kinematics and the second is
the inverse kinematics. This window is shown in Figure (6.10).The main function of the
first part is to allow the user to compute the position of the end effector by entering the
angles in the edit boxes or by moving the angle slider. There are two methods to move

Chapter 6: Robot Hardware and Software

 51

the robot arm by using off line button or by execute button. After entering all angles, the
transformation matrices are displayed in the FK window. The robot arm simulation is
shown in the right of the window; this allows the user to see the robot 3D motion.
Another function of this window is displaying the DH table, this table allows the user to
edit the DH parameters and plot it as shown in Figure (6.11).

Figure (6.10): Forward and Inverse Kinematic Window

Figure (6.11): Robot Arm Frame Coordinate

In the same window, there are two main buttons to control the robot by joystick mode or
manual mode. If we select manual mode, we can use the mouse or keyboard to edit the
angles, and we can select the joystick mode to move the robot.

The Second part of this window called inverse kinematic. The main function of
the inverse kinematic is finding the joint variables in terms of the end-effector position
and orientation. This function allows the user to compute the joint variables of the arm
by entering the position (x, y, z, and WARTG) of the end effector in the edit boxes or
by moving the angle slider.

After entering the position and the WARTG angle, the user must select the type
of solution by selecting Elbow UP or Elbow down and by pressing the same button in

Simulation and Interfacing of 5 DOF Educational Robot Arm

 52

forward kinematic. We can show the arm simulation and all transformation matrix of
the arm. If the user enters wrong angle or position, a dialog message appears as shown
in Figure (6.12).

Figure (6.12): Error Dialog message
2- Trajectory Planning Window

The manipulator shall move in the workspace along the pre-specified desired paths to
accomplish the desired action. A trajectory is a path with all necessary timing
specifications to calculate the required position, and velocity of the robot configuration.
In Trajectory Planning Window as shown in Figure (6.13), the user must enter the initial
and final position, WARTG and time, and then the user can choose the type of
polynomial as cubic, quintic or LSPB trajectory, then select the type of solution Elbow
down or up then the robot arm can move with this trajectory. Another function of this
window is to record the path of robot motion or multi-path by pressing record button
and by pressing execute button we can repeat the robot arm motion.

Figure (6.13): Trajectory Planning Window

Chapter 6: Robot Hardware and Software

 53

3- Jacobian Window

The Jacobian is one of the most important quantities in the analysis and control of robot
motion. The Jacobian can also be used to indicate possible configurations at which
singularities are present. Figure (6.14), shows the Jacobian matrix computed by the
program while moving the arm. Moreover, another function of this window is to display
a message appears stating the existence of the singularity of the arm if it occurs during
the work. This window can also be used to compute the relationship between static
force and torque by entering the force at all joint. The last function of this window is to
compute the relationship between the end-effector velocity and the joints velocity by
using the pseudo inverse Jacobian. The user enters the end-effector velocity in cm/s and
the program can get the result in rad/s.

Figure (6.14): Jacobian Window
4- Controller Window

Controller is very important for control of the robot. In this window, the user can choose
the type of controller he wants to apply for the robot. In future work, we can use
Simulink for classical controller or advance controller, like P, PD, PID, Fuzzy, Optimal,
Neural Network, Sliding Mode, H-infinity, Backstepping control, etc.

After the selection of the controller type, the robot will move under this
controller and the step response can be shown.

6.3 System Limitations

Figure (6.15) illustrates the joints and their directions of rotation. The arrows show
where the joint angle is zero and the plus and minus signs indicate whether the angle is
positive or negative in that direction of rotation. Joint zero rotates the robot relative to
the base and Joint 5 is the roll of the wrist.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 54

Figure (6.15): Robot Arm Joints

Table 3 lists the Joint limits of the AL5B robot arm in raw values (the servo control
input values are integers [0,…., 254]) and the correspondent values in degrees.

Table (6.2): Robot Arm Joint Limits
Joint Joint limits [Duty-time] Joint limits [Deg]

1 0.650742 < 1 < 2.465258 -90 ≤ 1≤ +90
2 0.765 < 2 < 2.453825 0 ≤ 2≤ +180
3 2.31583 < 3< 0.68461 -90 ≤ 3≤ +90
4 0.634138 < 4< 2.437746 -90 ≤ 4≤ +90
5 2.34222 < 5 < 0.67778 -80 ≤ 5≤ +80

gripper 1.726323 ≤ 6 ≤0.159678 0 ≤ 6 ≤ +60

Chapter 7: Results and Discussion

 55

CHAPTER 7 RESULTS AND DISCUSSIONS

This chapter presents simulations and results. Mathematical modeling and kinematic
analysis of a low cost AL5B Robot arm, was carried out in this study. Robot arm was
mathematically modeled with Denavit Hartenberg (D-H) method. Forward Kinematics,
Inverse Kinematics, Velocity Kinematic “Jacobian”, and Trajectory Planning solutions
are generated and implemented by the developed software. An analysis technique was
introduced to reduce the multiple solutions in inverse kinematics part. The developed
software included a simulator part to test the motional kinematics and to show the
relevant motion in 3D. A typical example, calculated with the generated software, was
included here for the user.

7.1 Experimental Results

In this section, the experimental results of simulation and interfacing are introduced
with brief comparison between the simulation results and the physical arm results.

7.1.1. Forward Kinematics

An initial position angle is given in Figure (7.1) with zero θ (0) 0 , 0,1,....,5i i . The
total transformation matrix of this position is shown in equation (7.1). This matrix gives
the initial position and orientation of the robot arm.

Figure (7.1): Initial Position Angle

 0
5

0 0 1 347

0 1 0 0
()

1 0 0 70

0 0 0 1

T final

 (7.1)

From equation (7.1), we find that the (x, y, and z) position of the end-effector is equal to
(347, 0, and 70). Figure (7.2) shows the 3D graphics of AL5B in this position.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 56

Figure (7.2): AL5B 3D Graphics Initial Position

When θ values are changed from zero to given values as shown in Figure (7.3).The total
transformation matrix, 0

5T between the base of the robot arm and the end effectors is

shown in equation (7.2).

Figure (7.3): Final Position Angle

 0
5

0.63 0.47 0.61 211

0.76 0.23 0.61 211
()

0.15 0.85 0.5 205

0 0 0 1

T final

 (7.2)

From equation (7.2), we can find the position of the end-effector equal [x, y, and z] =
[211, 211, and 205]. Figure (7.4) shows the 3D graphics of AL5B in this position.

Chapter 7: Results and Discussion

 57

Figure (7.4): AL5B 3D Graphics Final Position
0

5T is determined by the developed software and it is the final forward kinematics

solution of the robot arm. 0
5T Matrix values are checked against the physical positions

of the robot arm in Table 7.1.

Table (7.1): Differences Between Calculated And Physical Values Of AL5B Robot
Arm

Position Values 0
5T Values (mm)

Measured Values
(mm) Percentage Error

X 211 208.85 1%
Y 211 209.15 1%
z 205 194 5%

When calculating xyz coordinates of the target, position compared with the measured
coordinates as in Table 7.1, it is observed that the values were very close to each other.
However, there are some errors in (x, y and z) direction, but the error in z direction is
larger than the error in x or y direction. This error is a result of the weight of the arm
and the contents of the servo motor, so dynamic modeling should be applied to
eliminate this error.

7.1.2. Inverse Kinematics

On the other hand, inverse kinematics equations will be used to determine the target
position and its orientation for the robot arm. The developed software will calculate the
required angles for target orientation and target positioning.

An initial position is given in Figure (7.5) with x = 347, y = zero, z =70 and
WARTG = zero values. The total transformation matrix of this position is shown in
equation (7.1). This matrix gives the initial position and orientation of the robot arm.
Figure (7.2), shows the 3D graphics of AL5B in this position.

When x, y, z and WARTG values are changed from initial position to given
values in Figure (7.6) and select the solution type as Elbow Up .The total transformation
matrix, 0

5T between the base of the robot arm and the end effectors is shown in equation

(7.3).

Simulation and Interfacing of 5 DOF Educational Robot Arm

 58

Figure (7.5): X, Y, Z and WARTG Initial position

Figure (7.6): X, Y, Z and WARTG Final position

 0
5

0 0.8 0.6 150

0 0.6 0.8 200
()

1 0 0 200

0 0 0 1

T final

 (7.3)

From forward kinematic editor we can find the angles of the end-effector [1, 2, 3, 4
and 5] equal [53, 79, -73, -6 and 0]. Figure (7.7), shows the 3D graphics of AL5B in
this position with Elbow Up solution.

Chapter 7: Results and Discussion

 59

Figure (7.7): AL5B 3D Graphics Final Position with Elbow Up Solution

If we select the solution type as Elbow Down. The total transformation matrix, 0
5T

between the base of the robot arm and the end effectors is shown in equation (7.3).
From forward kinematic editor we can find the angle of the end-effector equal [1, 2, 3,
4 and 5] = [53, 3, 73, -76 and 0]. Figure (7.8) shows the 3D graphics of AL5B in this
position with Elbow Down solution.

Figure (7.8): AL5B 3D Graphics Final Position with Elbow Down Solution

The desired values are checked against the physical positions of the robot arm in
Table 7.2. When desired values xyz coordinates of the target position are compared with
the measured coordinates as in Table 7.2, it is observed that the values were very close
to each other.

Table (7.2): Differences Between Desired and Real Values Of AL5B Robot Arm
Positions

Position Values Desired Values (mm) Measured Values (mm) Percentage Error
X 150 148 1%
Y 200 198 1%
Z 200 192 4%

However, there are some errors in (x, y and z) direction. From table 7.1 and 7.2, we can
see the error in x and y direction is less than the error in z direction. This error is normal
and we can eliminate this error by applying any controller low like PID, but in z

Simulation and Interfacing of 5 DOF Educational Robot Arm

 60

direction the error is large and we can eliminate this error by analyzing the dynamic
modeling for AL5B robot arm.

7.1.3. Trajectory Planning

Straight-line motions are most common in the industrial applications; however,
movement on a line is mostly obtained by specifying the discrete time joint-
displacements at a constant time rate. The velocity and acceleration of the points can be
calculated from the numerical approximation of the time derivatives. Several methods
were used to compress the describing data of the trajectories as cubic, quintic and LSPB
trajectory.

Cubic Trajectory

Cubic polynomial or third order polynomial approximation describes the path
parametrically as a function of time with the position and velocity constraints at initial
time t = zero and final time tf. Third order polynomials provide continuity of
displacements and velocities, but may result in discontinuity of accelerations, thus
abrupt changes in joint torques. Higher order polynomials are required to guarantee the
smoothness of the joint accelerations.

An initial and final position is given in trajectory editor as shown in Figure (7.9)
with x = 347, y = zero, z =70 and WARTG = zero values and final position with x = 200,
y = 200, z =200 and WARTG = zero values. As shown in the same figure we choose the
solution type as Elbow Up.

Figure (7.9): Trajectory Editor

After selecting cubic trajectory button, the robot arm will be moved to the final position
and when that happens we see the cubic trajectory curve as shown in Figure (7.10). This
figure is divided into three parts shows the relation between the angle, velocity and
acceleration with time.

Chapter 7: Results and Discussion

 61

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

0

100

Time
A

ng
le

Trajectory using Cubic Polynomial

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-200

0

200

Time

V
el

oc
ity

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-2000

0

2000

Time

A
cc

el
er

at
io

n

Figure (7.10): Cubic Polynomial Trajectory

Quintic Trajectory

An initial and final position is given in trajectory editor as shown in Figure (7.9) with x
= 347, y = zero, z =70 and WARTG = zero values and final position with x = 200, y =
200, z =200 and WARTG = zero values. As shown in the same figure we choose the
solution type as Elbow Up.

After selecting quintic trajectory button, the robot arm will be moved to the final
position and when that happens we see the quintic trajectory curve as shown in Figure
(7.11). This figure is divided into three parts are shows the relation between the angle,
velocity and acceleration with time.

Parabolic blend with linear segments

This type of trajectory is appropriate when a constant velocity is desired along a portion
of the path. The LSPB trajectory is such that the velocity is initially “ramped up” to its
desired value and then “ramped down” when it approaches the goal position.

An initial and final position is given in trajectory editor as shown in Figure (7.12) with x
= 347, y = zero, z =70 and WARTG = zero values and final position with x = 200, y
=200, z =200 and WARTG = zero values. The LSPB needs to enter the initial and final
velocity for all angles, but in MATLAB program the LSPB function compute the
velocity for all angles by using equation (5.39). As shown in the same figure, we choose
the solution type as Elbow Up.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 62

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

0

100

Time
A

ng
le

Trajectory using Quintic Polynomial

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-500

0

500

Time

V
el

oc
ity

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-2000

0

2000

Time

A
cc

el
er

at
io

n

Figure (7.11): Quintic Polynomial Trajectory

Figure (7.12): LSPB Trajectory Editor

After selecting LSPB trajectory button, the robot arm will be moved to the final
position and when that happens we see the LSPB trajectory curve as shown in Figure
(7.13). This figure is divided into three parts and shows the relation between the angle,
velocity and acceleration with time.

Chapter 7: Results and Discussion

 63

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-100

0

100

Time

A
ng

le

Trajectory using LSPB

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

0

20

Time

V
el

oc
ity

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-50

0

50

Time

A
cc

el
er

at
io

n

Figure (7.13): LSPB Polynomial Trajectory

7.1.4. Velocity Kinematic

Jacobian Matrix

Example 1:

When the robot arm is moving the developed software will calculate the Jacobian
matrix for target orientation and target positioning. An initial position is given in Figure
(7.5) with x = 347, y = zero, z =70 and WARTG = zero values. The Jacobian matrix of
this position is shown in Figure (7.14).

Figure (7.14): Example 1 Jacobian Matrix

From the Jacobian matrix in Figure (7.14), the developed software compute the arm
singularity. In this position the robot well be in singular mode, and the message shown
in Figure (7.15) will show that.

Figure (7.15): Example 1 Singular Mode

Simulation and Interfacing of 5 DOF Educational Robot Arm

 64

Example 2

When position values are changed from home position to another position as shown in
Figure (7.6). The developed software will calculate the Jacobian matrix for the target
orientation and target position. The Jacobian matrix of this position is shown in Figure
(7.16).

Figure (7.16): Example 2 Jacobian Matrix

From the Jacobian matrix in Figure (7.16), the developed software compute the arm
singularity. In this position the robot is in non-singular mode, and the message shown in
Figure (7.17) will show that.

Figure (7.17): Example 2 Singular Mode

Torque and Force

The developed software computes the relationship between static force and torque by
entering the force at end-effector and compute the torque.

Example 3

An initial force (N) is given in Figure (7.18) with zero values. The torque results is
shown in the same figure equal zero (N.m).

Figure (7.18): Example 3 Torque - Force Relationship

Example 4

When force values are changed from zero value to another value as shown in Figure
(7.19). The developed software will calculate the torque as shown in Figure (7.19).

Chapter 7: Results and Discussion

 65

Figure (7.19): Example 4 Torque - Force Relationship

End-effector and Joints Velocity

We can compute the relationship between the end-effector velocity (cm/s) and the joints
velocity (rad/s) by using developed software.

Example 5

An initial end-effector velocity (cm/s) is given in Figure (7.20) with zero values. The
joints velocity results have shown in the same figure equal zero (rad/s).

Figure (7.20): Example 5 End-effector and Joints Velocity

Example 6

When the end-effector velocity values are changed from zero value to another value, the
developed software will calculate joints velocity as shown in Figure (7.21).

Figure (7.21): Example 6 End-effector and Joints Velocity

Denavit-Hartenberg

The developed software allows user to change the DH parameters shown in Figure
(7.22) and plot the robot link.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 66

Example 7

An initial parameter is given in Figure (7.22) with = [0,90,0,0,-90], a =
[0,0,120,127,0], d =[70,0,0,0,100] values. Figure (7.23) shows the Robot Arm Frame
Coordinate.

Figure (7.22): DH Initial Parameter

-300
-200

-100
0

100
200

300 -300
-200

-100
0

100
200

300
0

50

100

150

200

250

300

yy
zz

y

xx
z x

xx
x

z

y

z

y

y

x

zy

z

Figure (7.23): Example 7 Robot Arm Frame Coordinate

Example 8

When the DH parameter values are changed from initial value to with = [0,0,0,0,0], a
= [0,0,100,127,0], d =[70,0,0,0,100] and link radius = 1.5 as shown in Figure (7.24).
The developed software plots the Robot Arm Frame Coordinate as shown in Figure
(7.25). If the user enters wrong DH parameters then the 3D model of the robot arm will
be as shown in Figure (7.26). We note that false DH parameters break down the arm.

Figure (7.24): Example 8 DH Parameter

Chapter 7: Results and Discussion

 67

-300
-200

-100
0

100
200

300 -300
-200

-100
0

100
200

300
0

50

100

150

200

250

300

y

yy

xx
z x

z

zz

x

xx

y

z

y

yy

x

zz

Figure (7.25): Example 8 Robot Arm Frame Coordinate

Figure (7.26): Example 8 Robot Arm 3D Graphical

Pick and Place

One of the main applications used in industrial robot is to move things from one place
to another.

Example 9

We want to move four blocks from initial position to another position, the initial
positions for the blocks are = [280 0 45; 280 0 30; 280 0 15; 280 0 0; 347 0 70] and the
Final Positions equal [0 280 0; 0 280 15; 0 280 30; 0 280 45]. The developed software
make this job as shown in Figure (7.27).

Simulation and Interfacing of 5 DOF Educational Robot Arm

 68

Figure (7.27): Move Blocks from Initial Position to Final Position

Chapter 8: Conclusion and Recommendations

 69

CHAPTER 8 CONCLUSION AND
RECOMMENDATIONS

This report presented the development of educational software package using
MATLAB/Simulink and 3D model. AL5B robot arm was modeled in this research. The
complete software life cycle was implemented and validated. A complete mathematical
model of AL5B robot is developed including complete Kinematics analyses of the
AL5B robot arm. Forward and inverse kinematics equations were derived using
Denavit-Hartenberg notation. Velocity Kinematic “Jacobian”, and Trajectory Planning
solutions were generated and implemented by the developed software. Simulation
studies were performed by using MATLAB software’s. By using 3D graphics program,
structure for the AL5B robot was built which enable the researchers to investigate robot
parameters using both forward and inverse kinematics and in turn, this was facilitated
the process of designing, constructing and inspecting on the robots in the real world.

The Graphical User Interface (GUI) of the software package was developed for testing
motional characteristics of the Robot arm. A physical interface between the AL5B robot
arm and the GUI was designed and built. A comparison between kinematics solutions of
the virtual arm and the robot's arm physical motional behaviors were been accomplished.
The results are displayed in a graphical format and the motion of all joints and end
effector can be observed.

The developed system was identified as an educational experimental tool; it can be used
in graduate and undergraduate robotic courses to realize the relationships between
theoretical and practical aspects of robot manipulator motions in real time. Some of
these applications are:

 Forward Kinematics.

 Inverse Kinematics.

 Velocity Kinematic

 Trajectory Planning and Path Planning

 Reedy to Apply Controller Low

Since MATLAB is slow in the execution time, we recommend using a high-level
computer programming language to perform the software part.

A future work can be focused on different topics, like the development of
different types of controllers be applied on the developed platform then selecting the
best control strategy for this type of manipulators. This is to improve the obtained
results and to minimize the error between the real arm and the simulated one.

Many future developments can be carried on this robot arm like other types for
robots, these developments include path-planning, dynamics modeling, force control
and computer vision.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 70

REFERENCES

[KOL 01] E. Kolberg, and N Orlev, “Robotics Learning as a Tool for Integrating
Science-Technology curriculum in K-12 Schools,” 31st Annual Frontiers in Education
Conference. Impact on Engineering & Science Education. Conference Proceedings,
Reno, NV, USA, 2001.

[MIL 00]D.P. Miller and C. Stein,”So That's What Pi is For" and Other Educational
Epiphanies from Hands-on Robotics, in Robots for kids: Exploring new technologies
for learning experiences, A. Druin, A. & J. Hendler (Eds.) San Francisco, CA: Morgan
Kaufmann 2000.

[WED 02] K. Wedeward, and S. Bruder, "Incorporating Robotics into Secondary
Education," Robotics Manufacturing Automation and Control. Vol.14.Proceeding of the
5th Biannual World Automation Congress (WAC 2002) ISORA 2002, ISIAC 2002 and
ISOMA, Orlando, FL, USA.2002.

[FER 00] N. M. F. Ferreira and J. A. T. Machado, “RobLib: an educational program for
robotics,” Symposium on Robot Control (SYROCO 2000), Vienna, Austria, Volume:2,
PP 563-568, 2000

[MUR 00] R.R. Murphy, “Robots and Education”, Intelligent. Systems IEEE, Vol. 15,
No. 6, pp. 14 -15, 2000.

[MUR 01] R. R. Murphy, “Competing for a Robotics Education”, IEEE Robotics &
Automation Magazine, Volume 8, Issue 2, pp. 44-55,2001.

[SUT 00] K. T. Sutherland, “Undergraduate robotics on a shoestring,” IEEE Intelligent
Systems, Volume: 15,. Issue: 6, pp. 28-31, 2000

[MAN 96] R. Manseur, "A Software Package For Computer-Aided Robotics Education",
pp.1409-1412, 26th Annual Frontiers in Education - Vol 3, 1996

[ROH 00] Martin Rohrmeier, "Web Based Robot Simulation Using VRML",
Proceedings of the 2000 Winter Simulation Conference

[SPO 05] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and
Control, 1st Edition, John Wiley & Sons.2005

[CRA 05] Johan J.Craig, Introduction to Robotics Mechanics and Control, 3rd Edition,
pp 109-114, Prentice Hall, 2005

[BRA 07] Leniel Braz de Oliveira Macaferi, "Construction and Simulation of a Robot
Arm with Opengl", May 16, 2007

[KOY 07] Baki koyuncu, and Mehmet Güzel, "Software Development For the
Kinematic Analysis Of A AL5B Robot Arm", pwaset volume 24 october 2007 issn
1307-6884.

[JAM 08] Muhammad Ikhwan Jambak, Habibollah Haron, Dewi Nasien, "Development
of Robot Simulation Software for Five Joints Mitsubishi RV-2AJ Robot using
MATLAB/Simulink and V-Realm Builder", Fifth International Conference on
Computer Graphics, Imaging and Visualization, 2008

[AUN 08] Chun Htoo Aung, Khin Thandar Lwin, and Yin Mon Myint, "Modeling
Motion Control System for Motorized Robot Arm using MATLAB", Proceedings Of

References

 71

World Academy Of Science, Engineering And Technology Vol. 32 August 2008 Issn
2070-3740

[WIR 04] Arya Wirabhuana1, Habibollah bin Haron "Industrial Robot Simulation
Software Development Using Virtual Reality Modeling Approach (VRML) and
MATLAB- Simulink Toolbox", University Teknologi Malaysia, 2004

[GUR 97] Osman Gürdal, Mehmet Albayrak And Tuncay Aydogan, "Computer Aided
Control And Simulation Of Robot Arm Moving In Three Dimension", Electrical &
Computer Education Department, Isparta / Turkey, 1997

[PAS 07] Ildiko Paşc, Radu Ţarcă, Florin Popenţiu-Vlădicescu, The VRML Model And
Vr Simluation For A Scara Robot, Annals Of The Oradea University, Fascicle Of
Management And Technological Engineering, Volume Vi (Xvi), 2007

[BRO 05] Tim Brooks," Teleoperated Robotic Arm with Force Feedback" Institute of
Information Science and Technology, Massey University, Private Bag 11222,
Palmerston North, New Zealand

[MAR 06] An OpenGL Application for Industrial Robots Simulation, C. Marcu, Gh.
Lazea, R. Robotin Technical University of Cluj-Napoca, Romania, 2006 IEEE.

[FER 08] Ferretti Gianni, Magnani Gianantonio, Porrati Paolo, Rizzi Gianpaolo, Rocco
Paolo, Rusconi Andrea: “Real-Time Simulation of a Space Robotic Arm“, IEEE 2008.

[MIK 02] Mikael Johnsson and Andreas Örmo,” Visual Programming Simplified online
programming of arc welding robots”, Department of Computer Science at Mälardalen
University, Västerås, Sweden January 2002.

[MOH 09] Mohammed Abu Qassem, Iyad Abuhadrous, Hatem Elaydi, “Modeling and
Simulation of 5 DOF Educational Robot Arm”, The 2nd IEEE International Conference
on Advanced Computer Control, Shenyang, 20. Dec. 2009.

[PTCDB] Palestine Technical College at Deir El-Balah, Annual Robot Contest, online:
http://www.ptcdb.edu.ps/

[LYN 06] AL5B, Lynxmotion, 2006, access date: 1-5-2009, online:
http://www.lynxmotion.com/

[COM 05] CB280, COMFILE Technology, 2005, access date: 1-9-2010, online:
http://cubloc.com/product/01_01cb280.php

[ULT] UltraArc,http://www.3ds.com/products/delmia, last access: 1-2010.

[ROB] RobotStudio, http://www.microsoft.com/robotics/, last access: 1-2010.

[CIM] CimStation Robotics http://www.acel.us/manufacturing-simulation/e-
hub/cimstation-robotics/, last access: 1-2010.

[ROP] ROPSIM, http://www.camelot.dk/, last access: 1-2010.

[ROB] RobotScript, http://www.plantautomation.com,last access: 1-2010.

[DYM] Dymola, www.dymola.com/, last access: 1-2010.

[MAT], V-Realm Builder, http://www.mathworks.de/,last access: 1-2010.

[OPE] OpenGL, http://www.opengl.org/, last access: 1-2010.

[POL] Poly Trans, http://www.okino.com/conv/conv.htm, last access: 1-2010.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 72

APPENDIX A: ROBOT DESCRIPTION AND
SPECIFICATION

A.1. AL5B Arm Configuration
The AL5B Arm service represents the physical robotic arm as a list of joints,
implementing the contract defined in Articulated Arm State. The five joints of the arm
are defined in a serial order from the base to the wrist rotate. Each joint has only one
degree of “twist” angular freedom and a range from -90 degrees to 90 degrees about the
joint axis. The joint axis and joint normal are designated using coordinate system. The
dimension and details about AL5B robot arm are shown in Table (8.1). Figure (8.1)
shown the AL5B robot arm dimensions

Table (A.1) AL5B Robot Arm Dimension
AL5B Robot Arm Dimension in (mm)

Base Diameter 100,hight 50
Shoulder Diameter 100,hight 30
Upper Arm Length 127, Thickness 53
Forearm Length 120, Thickness 43
Wrist Length 70, Thickness 53
Flange Length 7, wide 15,height 30
Gripper Length 51, Gripper Opening 50

Figure (A.1) AL5B Robot Arm Dimension

A.2. Mechanical System
The mechanical system consists of all non-electrical components of the robotic arm.
The system used to reproduce or simulate the mechanics of a human arm. The basic
“bone” structure designed and constructed of some type of metal or plastic, and like the
human arm, critical joints will connect these “bones”. These joints designed to provide
both stability and the proper range of motion. A variety of motors used to actuate the

Appendix

 73

assembly at these joints. The mechanical system shown in Figure (8.2) divided into the
following components.

Figure (A.2) Mechanical System

 Arm Mount

The first step is to design a base for the arm to be mounted to; the mount will be
attached to a solid base that will sit on the ground or a table. The mount must be long
enough to provide the desired range of arm motion without making the system unstable.
The arm mount and base will house the Robotic Actuator Controller (RAC).

Figure (A.3) Arm Mount

 Shoulder

After the base is designed, a shoulder joint will be designed. The shoulder must provide
three functions. It must anchor the rest of the arm to the arm mount, provide the desired
range of arm motion, and provide a connector for the upper arm. The shoulder will also
house the electromechanical assembly used for the upper arm actuation.

Figure (A.4) Shoulder

 Upper Arm and Forearm

The upper arm must connect to the shoulder connector and provide a “Forearm” joint
for which the lower arm will be connected. The upper arm needs to be stable and long
enough to support the range of arm motion. The Forearm must provide a connector for
the lower arm as well as holding the electromechanical assembly used for the actuation
of the lower arm.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 74

Figure (A.5) Upper Arm and Forearm

 Wrist and gripper

The Wrist arm must connect to the Forearm connector and provide a “wrist” joint for
the hand to attach to. The Wrist arm must be stable and needs to be long enough to
support the arm’s desired range of motion. The wrist must provide a connector for the
hand and house the electromechanical assembly for the actuation of the gripper.

Figure (A.6) Wrist and gripper

A.3. Drawing Description
The first step in this process is to design the arm in AutoCAD 3D program. The
program chosen for this was Autodesk Inventor. Inventor allows the arm to be designed
and visualized at the same time. It also allows the arm to be checked for possible
collisions and link interference. Because each link depends upon the previous link, the
design of the arm needs to begin at the base and finish at the end effector or gripper.
Trunk or base is therefore the first to be designed, followed by shoulder, and so on. This
means that the design process is fairly involved, as each link has to be redesigned
several times. Now we will show links and joint of our AL5B as follow:

 Trunk

Figure (A.7) Trunk
 Shoulder

Figure (A.8) Shoulder

Appendix

 75

 Upper Arm

Figure (A.9) Upper Arm
 Forearm

Figure (A.10) Forearm
 Wrist

Figure (A.11) Wrist
 Flange

Figure (A.12) Flange
 Gripper

Figure (A.13) Gripper
A.4. Electrical System
The electrical system will consist of all the electrical and computer components of the
project. The system will be used to respond to the input stimuli and control the
actuation of the robotic arm. The electrical system can be divided into the components
discussed below.

Simulation and Interfacing of 5 DOF Educational Robot Arm

 76

 RC Servo Motor

The arm uses HS-475HB servo motor in the base, HS-755HB in the shoulder, HS-
645MG in the elbow, HS-475HB in the wrist, and HS-422 in the gripper. The wrist
rotate uses HS-85BB.

 CUBLOC Microcontroller

As shows in Figure (1), the main board has one positive power inputs, in the middle
there is a C8280.The main voltage is between 6 V to 12 V. Then we used a voltage
regulator to stable at 5 V. Rest switch used to restart the board, com port used to
connect the kit with the PC, the I/O port used to connect the main board with the
interface kit shown in Figure(2).

Figure (A.14) MAIN BOARD CUBLOC

Figure (2) shown the interface kit, it consists may port like, ADC port used to read the
analogue value of the angle, PWM port used to send the control signal to servo motor,

Figure (A.15) Interface Kit

Appendix

 77

The contact pin of Servo motor has 6 lines, each line owns 3 pins. See the above Figure
in blue words; the pins in the most lateral connect to GND. Power shows in the middle.
The signal pin lays in the most inner connect to the yellow wires of servo motor. The
I/O port connecting with the main board this used to received and send data between the
main board and interface board.

 Wiring Harness

The wiring harness will connect all of the servo motor to the interface kit. It will be
designed so that it can plug in directly to the connectors on the interface kit.

 Serial Cable

The CUBLOC and PC communicate through a serial communication link. A variety of
serial communication links are currently in use. The CUBLOC uses the RS-232 serial
communication. The serial cable, which is used in this thesis, is called the DB-9 serial
cable. The cable links a serial, or COM, port on the PC to the CB280 Kit. This allows
the user to download a program into the CUBLOC. In addition, this serial connection
enables data communication between the CUBLOC and the PC.

A.5. Schematic Diagram
 CB280 Kit

Figure (A.16) CB280 Kit Schematic Diagram

Simulation and Interfacing of 5 DOF Educational Robot Arm

 78

 Interface kit

Figure (A.17) CB280 Interface Kit

Appendix

 79

APPENDIX B: ECONOMIC COST AND MATLAB
FUNCTION

Economic Cost

Economic cost of the project can be separated in two groups. First of them is software
cost. Another one is hardware cost. Table (B.1) shows software cost and hardware cost.

Table (B.1) Software Cost And Hardware Cost.

Hardware Price ($) Software Price ($)

AL5B Robot Arm 1000$ Windows Operating System 100

CB280 Microcontroller 150 MATLAB 7.1 or higher 150

Microcontroller interface Kit 100 CublocStudio free

Computer 500 AL5B Robot Arm Software free

Total 1750 250

MATLAB function description

MATLAB File Description
LynxRobot001.m Main MATLAB file
LynxRobot001.fig Main GUI file

AllLinks.mat 3D Drawing Link
forkin.m Forward Kinematic Function
invkin.m Inverse Kinematic Function
cubic.m Cubic Trajectory Polynomial Function

quintic.m Quintic Trajectory Polynomial Function
LSPB.m (Linear Segment Parabolic Blend) trajectory

LynxJacman.m AL5B Jacobian Function
build_block.m Pick and Place Function
staticForce.m Relation Between Torque and Force Function

DH_axis.m
Homogeneous Transform that Describes the

End-Effector Frame
plotframe.m Plot Coordinate Frame

tmat.m Homogeneous Transformation Function
rotx.m Rotation about x Function
roty.m Rotation about y Function
rotz.m Rotation about z Function

